ATI TEAS 7
TEAS Exam Math Practice
1. Simplify the expression. What is the value of x? (5/4)x = 20
- A. 8
- B. 16
- C. 24
- D. 32
Correct answer: D
Rationale: To solve for x, multiply both sides by the reciprocal of 5/4 to isolate x. (4/5)(5/4)x = (4/5)20; x = 16. Therefore, the correct answer is 32. Choice A (8), Choice B (16), and Choice C (24) are incorrect as they do not represent the correct value of x obtained after correctly simplifying the expression.
2. There are 800 students enrolled in four allied health programs at a local community college. The percentage of students in each program is displayed in the pie chart. What is the number of students enrolled in the respiratory care program?
- A. 336
- B. 152
- C. 144
- D. 168
Correct answer: B
Rationale: To find the number of students enrolled in the respiratory care program, you need to calculate 19% of 800. 19% of 800 is (19/100) * 800 = 152 students. Therefore, the correct answer is B. Choice A (336), Choice C (144), and Choice D (168) are incorrect as they do not represent the correct percentage of students enrolled in the respiratory care program as indicated by the pie chart.
3. Simplify the following expression: 5 x 3 ÷ 9 x 4
- A. 5/12
- B. 8/13
- C. 20/27
- D. 47/36
Correct answer: A
Rationale: To simplify the expression 5 x 3 ÷ 9 x 4, first perform the multiplications and divisions from left to right: 5 x 3 = 15 and 9 x 4 = 36. So, the expression becomes 15 ÷ 36. When dividing fractions, multiply the first fraction by the reciprocal of the second fraction. Hence, 15 ÷ 36 = 15/36. To simplify the fraction further, find the greatest common divisor, which is 3. Divide both the numerator and denominator by 3 to get the final result: 15/36 = 5/12. Therefore, the correct answer is A. Choices B, C, and D are incorrect because they do not represent the correct simplification of the given expression.
4. John’s Gym charges its members according to the equation y = 40x, where x is the number of months and y represents the total cost to each customer after x months. Ralph’s Recreation Room charges its members according to the equation y = 45x. What relationship can be determined about the monthly cost to the members of each company?
- A. John’s monthly membership fee is equal to Ralph’s monthly membership fee.
- B. John’s monthly membership fee is more than Ralph’s monthly membership fee.
- C. John’s monthly membership fee is less than Ralph’s monthly membership fee.
- D. No relationship can be determined between the monthly membership fees.
Correct answer: C
Rationale: The equation y = 40x represents John's Gym charging $40 per month, while the equation y = 45x represents Ralph's Recreation Room charging $45 per month. Since $40 is less than $45, it can be concluded that John's Gym offers a lower monthly membership fee compared to Ralph's Recreation Room. Therefore, the correct answer is that John’s monthly membership fee is less than Ralph’s monthly membership fee. Choices A and B are incorrect because John's fee is not equal to or greater than Ralph's fee. Choice D is incorrect as there is a clear relationship indicating that John’s monthly membership fee is less than Ralph’s monthly membership fee.
5. Which of the following best describes the relationship in this set of data?
- A. High positive correlation
- B. Low positive correlation
- C. Low negative correlation
- D. No correlation
Correct answer: B
Rationale: The correct answer is 'B: Low positive correlation.' In a low positive correlation, the variables tend to increase together, but the relationship is not strong. This description fits the data set provided. Choice A, 'High positive correlation,' is incorrect because the correlation is not strong. Choice C, 'Low negative correlation,' is incorrect as the variables are not decreasing together. Choice D, 'No correlation,' is incorrect because there is a relationship between the variables, albeit weak.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access