ATI TEAS 7
TEAS Exam Math Practice
1. Simplify the expression. What is the value of x? (5/4)x = 20
- A. 8
- B. 16
- C. 24
- D. 32
Correct answer: D
Rationale: To solve for x, multiply both sides by the reciprocal of 5/4 to isolate x. (4/5)(5/4)x = (4/5)20; x = 16. Therefore, the correct answer is 32. Choice A (8), Choice B (16), and Choice C (24) are incorrect as they do not represent the correct value of x obtained after correctly simplifying the expression.
2. Solve the system of equations. Equation 1: 2x + y = 0 Equation 2: x - 2y = 8
- A. (1.8, 3.6) and (-1.8, -3.6)
- B. (1.8, -3.6) and (-1.8, 3.6)
- C. (1.3, 2.6) and (-1.3, -2.6)
- D. (-1.3, 2.6) and (1.3, -2.6)
Correct answer: B
Rationale: From Equation 1: 2x + y = 0. Solve for y: y = -2x. Substitute y = -2x into Equation 2: x - 2(-2x) = 8. Simplify to x + 4x = 8, then 5x = 8, and x = 8 ÷ 5 = 1.6. Substitute x = 1.6 back into y = -2x to find y = -3.2. Therefore, one solution is (1.6, -3.2). To find the second solution, use -1.6 for x to get (-1.6, 3.2). Thus, the correct answer is B, representing the solutions (1.8, -3.6) and (-1.8, 3.6). Choices A, C, and D contain incorrect values that do not match the solutions derived from solving the system of equations.
3. As part of a study, a set of patients will be divided into three groups. 4/15 of the patients will be in Group Alpha, 2/5 in Group Beta, and 1/3 in Group Gamma. Order the groups from smallest to largest, according to the number of patients in each group.
- A. Group Alpha, Group Beta, Group Gamma
- B. Group Alpha, Group Gamma, Group Beta
- C. Group Gamma, Group Alpha, Group Beta
- D. Group Alpha, Group Beta, Group Gamma
Correct answer: B
Rationale: The correct order is Group Alpha, Group Gamma, Group Beta based on the common denominators of the fractions. To determine the order from smallest to largest, compare the fractions' numerators since the denominators are different. Group Alpha has 4/15 patients, Group Gamma has 1/3 patients, and Group Beta has 2/5 patients. Comparing the fractions' numerators, the order from smallest to largest is Group Alpha (4), Group Gamma (1), and Group Beta (2). Therefore, the correct order is Group Alpha, Group Gamma, Group Beta. Choice A is incorrect as it lists Group Beta before Group Gamma. Choice C is incorrect as it lists Group Gamma before Group Alpha. Choice D is incorrect as it lists Group Beta before Group Gamma, which is not in ascending order based on the number of patients.
4. Which of the following describes a real-world situation that could be modeled by?
- A. Courtney charges a $12 fee plus $2 per hour to babysit. Kendra charges a $10 fee plus $5 per hour. Write an equation to find the number of hours for which the two charges are equal.
- B. Courtney charges a $2 fee plus $12 per hour to babysit. Kendra charges a $5 fee plus $10 per hour. Write an equation to find the number of hours for which the two charges are equal.
- C. Courtney charges a $12 fee plus $2 to babysit. Kendra charges a $10 fee plus $5 to babysit. Write an equation to find the number of hours for which the two charges are equal.
- D. Courtney charges $10 plus $2 per hour to babysit. Kendra charges $12 plus $5 per hour. Write an equation to find the number of hours for which the two charges are equal.
Correct answer: A
Rationale: In the given situation, Courtney charges a $12 fee plus $2 per hour to babysit, represented by the equation: 12 + 2h where h is the number of hours. Kendra charges a $10 fee plus $5 per hour, represented by the equation: 10 + 5h. To find the number of hours for which the two charges are equal, we set the two equations equal to each other: 12 + 2h = 10 + 5h. Solving for h gives h = 2. This means that the charges are equal after 2 hours of babysitting. Choice B is incorrect because the fee and hourly rates for Courtney and Kendra are reversed, leading to an incorrect equation. Choices C and D are incorrect as they do not accurately represent the given scenario of fees and hourly rates for babysitting by Courtney and Kendra.
5. How many millimeters are in a meter?
- A. 100 mm
- B. 1,000 mm
- C. 10,000 mm
- D. 100,000 mm
Correct answer: B
Rationale: The correct answer is B: 1,000 mm. This is because there are 1,000 millimeters in a meter. To convert from meters to millimeters, you need to multiply by 1,000. Choices A, C, and D are incorrect. A meter is equivalent to 1,000 millimeters, not 100 (A), 10,000 (C), or 100,000 (D) millimeters.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access