ATI TEAS 7
Math Practice TEAS Test
1. Cora skated around the rink 27 times but fell 20 times. What percentage of the time did she not fall?
- A. 0.37
- B. 0.74
- C. 0.26
- D. 0.15
Correct answer: C
Rationale: To find the percentage of the time Cora did not fall, subtract the number of times she fell (20) from the total number of times she skated around the rink (27). This gives us 27 - 20 = 7 times she did not fall. To express this as a percentage, calculate (7/27) * 100% = 25.93%, which is approximately 26%. Therefore, the correct answer is 0.26 (C). Choice A (0.37), Choice B (0.74), and Choice D (0.15) are incorrect as they do not represent the percentage of the time Cora did not fall based on the information provided.
2. Which of the following equations does not represent a function?
- A. y = x^2
- B. y = sqrt(x)
- C. x = y^2
- D. y = 2x + 1
Correct answer: C
Rationale: An equation represents a function if each input (x-value) corresponds to exactly one output (y-value). In the equation x = y^2, for a single x-value, there are two possible y-values (positive and negative square root), violating the definition of a function. This violates the vertical line test, where a vertical line intersects the graph in more than one point for non-functions. Choices A, B, and D all pass the vertical line test and represent functions, making them incorrect answers.
3. Robert scores three new clients every eight months. After how many months has he secured 24 new clients?
- A. 64
- B. 58
- C. 52
- D. 66
Correct answer: A
Rationale: To find out the number of months needed to secure 24 new clients, you can set up a proportion: 3 clients / 8 months = 24 clients / x months. Cross multiplying gives you 3x = 24 * 8. Solving for x: 3x = 192, x = 192 / 3, x = 64. Therefore, Robert will secure 24 new clients after 64 months. Choice A is correct. Choice B (58), Choice C (52), and Choice D (66) are incorrect as they do not align with the correct calculation based on the given proportion.
4. Simplify the expression: 2x + 3x - 5.
- A. 5x - 5
- B. 5x
- C. x - 5
- D. 2x - 5
Correct answer: A
Rationale: To simplify the expression 2ð‘¥ + 3ð‘¥ - 5, follow these steps: Identify and combine like terms. The terms 2ð‘¥ and 3ð‘¥ are both 'like terms' because they both contain the variable ð‘¥. Add the coefficients of the like terms: 2ð‘¥ + 3ð‘¥ = 5ð‘¥. Simplify the expression. After combining the like terms, the expression becomes 5ð‘¥ - 5, which includes the simplified term 5ð‘¥ and the constant -5. Thus, the fully simplified expression is 5ð‘¥ - 5, making Option A the correct answer. This method ensures all terms are correctly simplified by combining similar elements and retaining constants.
5. Solve for x in the equation: 3x - 5 = 16
- A. 7
- B. 5
- C. 8
- D. 9
Correct answer: C
Rationale: To solve for x, add 5 to both sides of the equation: 3x - 5 + 5 = 16 + 5, which simplifies to 3x = 21. Next, divide both sides by 3: x = 21 ÷ 3 = 7. Therefore, the correct answer is x = 7, making option A the correct choice. Option C, '8,' is incorrect as it is not the solution obtained from the correct calculations. Options B and D, '5' and '9,' are also incorrect and not the solution to the given equation.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access