ATI TEAS 7
Math Practice TEAS Test
1. How can you visually differentiate between a histogram and a bar graph?
- A. A bar graph has gaps between the bars; a histogram does not
- B. A bar graph displays frequency; a histogram does not
- C. A histogram illustrates comparison; a bar graph does not
- D. A bar graph includes labels; a histogram does not
Correct answer: A
Rationale: The key difference between a histogram and a bar graph is that a bar graph has gaps between the bars, while a histogram does not. This feature helps in visually distinguishing between the two. Choice B is incorrect because both types of graphs can show frequency. Choice C is incorrect as both graphs can be used for comparison. Choice D is incorrect as both types of graphs can have labels for better understanding.
2. One gallon of cleaning solution requires 6 oz of ammonia. If the maintenance department needs 230 gallons of solution to clean all of the floors, how much ammonia is needed?
- A. 1380 gallons
- B. 6900 gallons
- C. 1380 oz
- D. 1400 oz
Correct answer: C
Rationale: To find out how much ammonia is needed for 230 gallons of cleaning solution, you multiply the amount of ammonia needed per gallon by the total gallons of solution required. Therefore, 230 gallons * 6 oz/gallon = 1380 oz of ammonia. Option A ('1380 gallons') and Option B ('6900 gallons') are incorrect as the question asks for the amount of ammonia needed, not the total volume of cleaning solution. Option D ('1400 oz') is incorrect as it does not correctly calculate the amount of ammonia required based on the given information.
3. Your measurement of the width of a door is 36 inches. The actual width of the door is 35.75 inches. What is the relative error in your measurement?
- A. 0.70%
- B. 0.01%
- C. 0.99%
- D. 0.10%
Correct answer: A
Rationale: To calculate relative error, you use the formula: (|measured value - actual value| / actual value) * 100%. Substituting the values, we get (|36 - 35.75| / 35.75) * 100% = (0.25 / 35.75) * 100% = 0.7%. This means your measurement is off by 0.7% from the actual width of the door. Choice B, 0.01%, is too small as it doesn't reflect the actual difference. Choices C and D are significantly different from the calculated answer and do not represent the accurate relative error in the measurement.
4. During week 1, Nurse Cameron works 5 shifts. During week 2, she worked twice as many shifts as she did in week 1. In week 3, she added 4 shifts to the number of shifts worked in week 2. Which equation describes the number of shifts Nurse Cameron worked in week 3?
- A. Shifts = (2)(5) + 4
- B. Shifts = (4)(5) + 2
- C. Shifts = 5 + 2 + 4
- D. Shifts = (5)(2)(4)
Correct answer: A
Rationale: During week 1, Nurse Cameron worked 5 shifts. In week 2, she worked twice as many shifts as in week 1, which is 10 shifts. In week 3, she added 4 shifts to the number of shifts worked in week 2. Therefore, the total shifts in week 3 can be calculated as (2)(5) + 4 = 10 + 4 = 14 shifts. Choice A correctly represents this calculation. Choices B, C, and D are incorrect because they do not accurately reflect the given scenario and the steps needed to find the total shifts in week 3.
5. Which of the following is the correct simplification of the expression below? 12 ÷ 3 × 4 - 1 + 23
- A. 6
- B. 21
- C. 38
- D. 23
Correct answer: C
Rationale: The correct order of operations dictates solving division and multiplication before addition and subtraction. Therefore, following the order: (12 ÷ 3) × 4 - 1 + 23 = 4 × 4 - 1 + 23 = 16 - 1 + 23 = 38. Choice A (6) results from adding and subtracting before division and multiplication. Choice B (21) results from incorrect placement of parentheses. Choice D (23) is the last number in the expression and does not reflect the cumulative result of the operations.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access