ATI TEAS 7
Math Practice TEAS Test
1. How can you visually differentiate between a histogram and a bar graph?
- A. A bar graph has gaps between the bars; a histogram does not
- B. A bar graph displays frequency; a histogram does not
- C. A histogram illustrates comparison; a bar graph does not
- D. A bar graph includes labels; a histogram does not
Correct answer: A
Rationale: The key difference between a histogram and a bar graph is that a bar graph has gaps between the bars, while a histogram does not. This feature helps in visually distinguishing between the two. Choice B is incorrect because both types of graphs can show frequency. Choice C is incorrect as both graphs can be used for comparison. Choice D is incorrect as both types of graphs can have labels for better understanding.
2. What is the probability of flipping a coin and getting heads?
- A. 1/2
- B. 1/3
- C. 1/4
- D. 1/5
Correct answer: A
Rationale: The correct answer is A: 1/2. When flipping a fair coin, there are two possible outcomes: heads or tails. The probability of getting heads is 1 out of 2 possible outcomes, which can be expressed as 1/2. Choice B, 1/3, is incorrect because a fair coin only has two sides. Choices C and D, 1/4 and 1/5, are also incorrect as they do not represent the correct probability of getting heads when flipping a coin.
3. Simplify the expression: 2x + 3x - 5.
- A. 5x - 5
- B. 5x
- C. x - 5
- D. 2x - 5
Correct answer: A
Rationale: To simplify the expression 2๐ฅ + 3๐ฅ - 5, follow these steps: Identify and combine like terms. The terms 2๐ฅ and 3๐ฅ are both 'like terms' because they both contain the variable ๐ฅ. Add the coefficients of the like terms: 2๐ฅ + 3๐ฅ = 5๐ฅ. Simplify the expression. After combining the like terms, the expression becomes 5๐ฅ - 5, which includes the simplified term 5๐ฅ and the constant -5. Thus, the fully simplified expression is 5๐ฅ - 5, making Option A the correct answer. This method ensures all terms are correctly simplified by combining similar elements and retaining constants.
4. The total perimeter of a rectangle is 36 cm. If the length of each side is 12 cm, what is the width?
- A. 3 cm
- B. 12 cm
- C. 6 cm
- D. 8 cm
Correct answer: C
Rationale: The formula for the perimeter of a rectangle is P = 2(l + w), where P is the perimeter, l is the length, and w is the width. Given that the total perimeter is 36 cm and each side's length is 12 cm, we substitute the values into the formula: 36 = 2(12 + w). Solving for w gives us w = 6. Therefore, the width of the rectangle is 6 cm. Choice A (3 cm) is incorrect because the width is not half of the length. Choice B (12 cm) is the length, not the width. Choice D (8 cm) is incorrect as it does not match the calculated width of 6 cm.
5. A scientist is trying to determine how much poison will kill a rat the fastest. Which of the following statements is an example of an appropriate hypothesis?
- A. Rats that are given lots of poison seem to die quickly.
- B. Does the amount of poison affect how quickly the rat dies?
- C. The more poison a rat is given, the quicker it will die.
- D. Poison is fatal to rats.
Correct answer: C
Rationale: A valid hypothesis must be a testable statement that predicts a relationship between variables. Option C is the only statement that presents a clear cause-and-effect relationship between the amount of poison given and the time it takes for the rat to die. Option A is descriptive without predicting an outcome, option B is a question rather than a statement, and option D is a general fact about poison and rats, lacking a specific hypothesis for testing.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access