ATI TEAS 7
Practice Math TEAS TEST
1. A teacher earns $730.00 per week before any tax deductions. The following taxes are deducted each week: $72.00 federal income tax, $35.00 state income tax, and $65.00 Social Security tax. How much will the teacher make in 4 weeks after taxes are deducted?
- A. $2,250.00
- B. $2,550.00
- C. $2,400.00
- D. $2,232.00
Correct answer: D
Rationale: After deducting $172 weekly for taxes ($72 + $35 + $65), the teacher's net weekly income is $558. Over 4 weeks, the total income is $2,232.00. Choice A is incorrect as it does not account for the taxes deducted. Choice B is incorrect as it overestimates the income by not deducting the taxes. Choice C is incorrect as it also does not consider the tax deductions.
2. A farmer plans to install fencing around a certain field. If each side of the hexagonal field is 320 feet long, and fencing costs $75 per foot, how much will the farmer need to spend on fencing material to enclose the perimeter of the field?
- A. $2,240
- B. $2,800
- C. $3,360
- D. $4,480
Correct answer: C
Rationale: The field is a hexagon with six equal sides, each 320 feet long. To find the total cost of fencing material needed, multiply the cost per foot ($75) by the total perimeter of the field (6 sides x 320 feet). Therefore, the total cost will be $75 x 6 x 320 = $3,360. Thus, the farmer will need to spend $3,360 on fencing material. Choice A, $2,240, is incorrect as it does not account for the total perimeter of the field. Choice B, $2,800, is incorrect as it underestimates the total cost by not considering all sides of the hexagon. Choice D, $4,480, is incorrect as it overestimates the total cost by multiplying incorrectly or considering extra sides.
3. What is the area of the largest circle that can fit entirely inside a rectangle that measures 8 centimeters by 10 centimeters?
- A. 18π cm²
- B. 10π cm²
- C. 16π cm²
- D. 8π cm²
Correct answer: C
Rationale: The largest circle that can fit inside the rectangle would have a diameter of 8 cm, which means the radius is half of the diameter, thus 4 cm. The area of a circle is calculated using the formula A = πr², where r is the radius. Substituting the radius value into the formula, the area of the circle is π(4)² = 16π cm². Therefore, the correct answer is 16π cm². Choice A (18π cm²), B (10π cm²), and D (8π cm²) are incorrect because they do not represent the area of the largest circle that fits inside the given rectangle.
4. How do you convert Fahrenheit to Celsius and Celsius to Fahrenheit?
- A. Fahrenheit to Celsius: Subtract 32, then divide by 1.8; Celsius to Fahrenheit: Multiply by 1.8, then add 32
- B. Fahrenheit to Celsius: Subtract 32, then divide by 2; Celsius to Fahrenheit: Multiply by 1.8, then add 20
- C. Fahrenheit to Celsius: Multiply by 2, then add 32; Celsius to Fahrenheit: Subtract 32, then divide by 1.8
- D. Fahrenheit to Celsius: Subtract 30, then divide by 1.8; Celsius to Fahrenheit: Multiply by 2, then add 32
Correct answer: A
Rationale: To convert Fahrenheit to Celsius, you start by subtracting 32 from the Fahrenheit temperature and then divide the result by 1.8. This formula accounts for the freezing point of water at 32°F and the conversion factor to Celsius. To convert Celsius to Fahrenheit, you multiply the Celsius temperature by 1.8 and then add 32. This process takes into consideration the conversion factor from Celsius to Fahrenheit and the freezing point of water. Choice B is incorrect as dividing by 2 instead of 1.8 would yield an inaccurate conversion. Choice C is incorrect as it involves incorrect operations for both conversions. Choice D is incorrect as subtracting 30 instead of 32 for Fahrenheit to Celsius and multiplying by 2 instead of 1.8 for Celsius to Fahrenheit would provide incorrect results.
5. Mandy can buy 4 containers of yogurt and 3 boxes of crackers for $9.55. She can buy 2 containers of yogurt and 2 boxes of crackers for $5.90. How much does one box of crackers cost?
- A. $1.75
- B. $2.00
- C. $2.25
- D. $2.50
Correct answer: C
Rationale: To solve this problem, we can set up a system of equations. Let the cost of one container of yogurt be y and the cost of one box of crackers be c. From the first scenario, we have 4y + 3c = 9.55. From the second scenario, we have 2y + 2c = 5.90. Solving these equations simultaneously, we find that c = $2.25. Therefore, one box of crackers costs $2.25. Choice A, $1.75, is incorrect because it does not satisfy the given conditions in the system of equations. Choice B, $2.00, is incorrect as it does not match the calculated solution. Choice D, $2.50, is incorrect as it does not align with the calculated value for one box of crackers.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access