ATI TEAS 7
TEAS Test Math Questions
1. Solve the inequality for the unknown.
- A. x > 5
- B. x < 5
- C. x >= 5
- D. x <= 5
Correct answer: A
Rationale: When solving an inequality, the direction of the inequality sign changes depending on the operation performed. In this case, if the given inequality simplifies to x > 5, it means that the unknown value x must be greater than 5 for the inequality to hold true. Therefore, x > 5 is the correct solution. Option A is correct. Choices B, C, and D are incorrect because they do not correctly represent the relationship between x and 5 based on the given inequality.
2. What is the mode of the numbers in the distribution shown in the table?
- A. 1
- B. 2
- C. 3
- D. 4
Correct answer: A
Rationale: The mode of a set of numbers is the value that appears most frequently. In the distribution shown in the table, the number '1' occurs more times than any other number, making it the mode. Choices B, C, and D are incorrect because they do not represent the number that occurs most frequently in the dataset.
3. How can you visually differentiate between a histogram and a bar graph?
- A. A bar graph has gaps between the bars; a histogram does not
- B. A bar graph displays frequency; a histogram does not
- C. A histogram illustrates comparison; a bar graph does not
- D. A bar graph includes labels; a histogram does not
Correct answer: A
Rationale: The key difference between a histogram and a bar graph is that a bar graph has gaps between the bars, while a histogram does not. This feature helps in visually distinguishing between the two. Choice B is incorrect because both types of graphs can show frequency. Choice C is incorrect as both graphs can be used for comparison. Choice D is incorrect as both types of graphs can have labels for better understanding.
4. What defines a proper fraction versus an improper fraction?
- A. Proper: numerator < denominator; Improper: numerator > denominator
- B. Proper: numerator > denominator; Improper: numerator < denominator
- C. Proper: numerator = denominator; Improper: numerator < denominator
- D. Proper: numerator < denominator; Improper: numerator = denominator
Correct answer: A
Rationale: A proper fraction is characterized by having a numerator smaller than the denominator, while an improper fraction has a numerator larger than the denominator. Therefore, choice A is correct. Choice B is incorrect because it states the opposite relationship between the numerator and denominator for proper and improper fractions. Choice C is incorrect as it describes a fraction where the numerator is equal to the denominator, which is a different concept. Choice D is incorrect as it associates a numerator being smaller than the denominator with an improper fraction, which is inaccurate.
5. What defines rational and irrational numbers?
- A. Any number that can be expressed as a fraction; any number that cannot be expressed as a fraction
- B. Any number that terminates or repeats; any number that does not terminate or repeat
- C. Any whole number; any decimal
- D. Any terminating decimal; any repeating decimal
Correct answer: A
Rationale: Rational numbers are those that can be written as a simple fraction, including whole numbers and decimals that either terminate or repeat. Irrational numbers, on the other hand, cannot be expressed as fractions. Choice B is incorrect because not all rational numbers necessarily terminate or repeat. Choice C is incorrect as it oversimplifies the concept of rational and irrational numbers by only considering whole numbers and decimals. Choice D is incorrect as it inaccurately defines rational and irrational numbers solely based on decimals terminating or repeating, excluding the broader category of fractions.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access