solve the inequality for the unknown
Logo

Nursing Elites

ATI TEAS 7

TEAS Test Math Questions

1. Solve the inequality for the unknown.

Correct answer: A

Rationale: When solving an inequality, the direction of the inequality sign changes depending on the operation performed. In this case, if the given inequality simplifies to x > 5, it means that the unknown value x must be greater than 5 for the inequality to hold true. Therefore, x > 5 is the correct solution. Option A is correct. Choices B, C, and D are incorrect because they do not correctly represent the relationship between x and 5 based on the given inequality.

2. Solve the equation 8x − 6 = 3x + 24. Which of the following is the correct solution?

Correct answer: D

Rationale: To solve the equation 8x − 6 = 3x + 24, start by adding 6 to both sides: 8x − 6 + 6 = 3x + 24 + 6, which simplifies to 8x = 3x + 30. Next, subtract 3x from both sides to get 5x = 30. Finally, divide both sides by 5 to solve for x: x = 6. Therefore, the correct solution is x = 6. Choices A, B, and C are incorrect because they do not result from the correct algebraic manipulation of the equation.

3. If 5y - 7 = 13, what is y?

Correct answer: A

Rationale: To solve the equation 5y - 7 = 13, start by adding 7 to both sides to isolate the term with y: 5y = 20. Then, divide by 5 to solve for y, which gives y = 4. Therefore, the correct answer is A. Choice B, C, and D are incorrect as they do not yield the correct solution when substituted into the equation. It's important to follow the proper steps in solving linear equations to arrive at the correct answer.

4. What is the formula for the area of a circle?

Correct answer: A

Rationale: The correct formula for the area of a circle is A = πr², where π is a mathematical constant approximately equal to 3.14159 and r is the radius of the circle. Choice B, A = 2πr, represents the circumference of a circle, not the area. Choice C, A = πd, incorrectly uses the diameter (d) instead of the radius in the formula for area. Choice D, A = 2πd, is also related to the circumference of the circle, not the area. Therefore, option A is the only correct formula for calculating the area of a circle.

5. What is the area of a rectangle with a length of 5 cm and a width of 4 cm?

Correct answer: B

Rationale: To find the area of a rectangle, you multiply its length by its width. In this case, the length is 5 cm and the width is 4 cm. So, Area = length * width = 5 cm * 4 cm = 20 cm². Therefore, the correct answer is 20 cm². Choice A (9 cm²), Choice C (10 cm²), and Choice D (25 cm²) are incorrect as they do not result from the correct calculation of multiplying the length and width of the rectangle.

Similar Questions

Solve for x: x + 5 = x - 3.
You measure the width of your door to be 36 inches. The true width of the door is 75 inches. What is the relative error in your measurement?
If a tree grows an average of 4.2 inches in a day, what is the rate of change in its height per month? Assume a month is 30 days.
Which of the following describes a graph that represents a proportional relationship?
What is 4.6 rounded to the nearest integer?

Access More Features

ATI TEAS Premium Plus
$150/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses