ATI TEAS 7
Practice Math TEAS TEST
1. What is a common denominator?
- A. A shared multiple of two denominators
- B. A shared factor of two numerators
- C. A number that is the same in all fractions
- D. A number that divides evenly into both fractions
Correct answer: A
Rationale: A common denominator is a shared multiple of the denominators in a set of fractions. It is necessary when adding or subtracting fractions to have a common denominator to ensure that the fractions can be combined accurately. Choice B is incorrect because the common denominator is related to the denominators, not the numerators. Choice C is incorrect because while the common denominator is the same in all fractions being added or subtracted, it is not necessarily a number that is the same in all fractions. Choice D is incorrect because a common denominator is a multiple of the denominators, not a number that divides evenly into both fractions.
2. What is the overall median of Dwayne's current scores: 78, 92, 83, 97?
- A. 19
- B. 85
- C. 83
- D. 87.5
Correct answer: B
Rationale: To find the median of a set of numbers, first arrange the scores in ascending order: 78, 83, 92, 97. Since there is an even number of scores, we find the median by taking the average of the two middle values. In this case, the middle values are 83 and 92. Calculating (83 + 92) / 2 = 85, we determine that the overall median of Dwayne's scores is 85. Choice A (19) is incorrect as it does not correspond to any value in the given set of scores. Choice C (83) is the median of the original set but not the overall median once arranged. Choice D (87.5) is the average of all scores but not the median.
3. What is 2.7834 rounded to the nearest tenth?
- A. 2.7
- B. 2.78
- C. 2.8
- D. 2.88
Correct answer: C
Rationale: To round 2.7834 to the nearest tenth, we look at the digit in the hundredths place, which is 8. Since 8 is greater than or equal to 5, the digit in the tenths place is rounded up. Therefore, 2.7834 rounded to the nearest tenth is 2.8. Choice A (2.7) is incorrect because rounding down would require the digit in the hundredths place to be less than 5. Choice B (2.78) is incorrect because rounding to the nearest tenth involves considering the digit in the hundredths place. Choice D (2.88) is incorrect as it goes beyond rounding to just the nearest tenth.
4. Mathew has to earn more than 96 points on his high school entrance exam in order to be eligible for varsity sports. Each question is worth 3 points, and the test has a total of 40 questions. Let x represent the number of test questions. How many questions can Mathew answer incorrectly and still qualify for varsity sports?
- A. x > 32
- B. x > 8
- C. 0 ≤ x < 8
- D. 0 ≤ x ≤ 8
Correct answer: C
Rationale: To determine the number of correct answers Mathew needs, solve the inequality: 3x > 96. This simplifies to x > 32. Therefore, Mathew must answer more than 32 questions correctly to qualify for varsity sports. Since the test consists of 40 questions, he can afford to answer at most 40 - 32 = 8 questions incorrectly. Therefore, the correct answer is 0 ≤ x < 8. Option A (x > 32) is incorrect as it suggests Mathew needs to answer more than 32 questions correctly, which is not the case. Option B (x > 8) is also incorrect as it does not account for the total number of questions in the test. Option D (0 ≤ x ≤ 8) is incorrect as it includes the possibility of answering all questions incorrectly, which is not allowed for Mathew to qualify for varsity sports.
5. What is the formula to find the circumference of a circle?
- A. Circumference = 2πr
- B. Circumference = πr²
- C. Circumference = 2r²
- D. Circumference = r²π
Correct answer: A
Rationale: The correct formula to find the circumference of a circle is C = 2πr, where C represents the circumference and r is the radius of the circle. Choice B, Circumference = πr², represents the formula for the area of a circle rather than the circumference. Choice C, Circumference = 2r², is incorrect as it does not involve π in the formula. Choice D, Circumference = r²π, has the terms reversed compared to the correct formula; the formula should start with the constant (2) multiplied by π, followed by the radius.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access