ATI TEAS 7
TEAS Practice Test Math
1. What is an equivalent fraction?
- A. A fraction that looks different but represents the same value
- B. A fraction that is smaller than another fraction
- C. A fraction that is larger than another fraction
- D. A fraction that has the same numerator as another fraction
Correct answer: A
Rationale: An equivalent fraction is a fraction that may look different in terms of its numerator and denominator but still represents the same value or quantity. This means that when you simplify or expand a fraction, its value remains unchanged. Choice B and C are incorrect because equivalent fractions are not determined by being smaller or larger than another fraction; it is about representing the same quantity. Choice D is incorrect because equivalent fractions may have different numerators as long as the ratio between the numerator and denominator remains the same.
2. Sarah works part-time and earns $12 per hour. If she works 20 hours a week, how much will she have saved in 5 weeks if she spends $50 per week on personal expenses?
- A. $600
- B. $750
- C. $500
- D. $650
Correct answer: C
Rationale: To find out how much Sarah saves in 5 weeks, first calculate her weekly earnings: $12/hour × 20 hours/week = $240/week. Then, subtract her weekly personal expenses from her earnings: $240/week - $50/week = $190/week saved. Over 5 weeks, she will save $190/week × 5 weeks = $950. However, none of the provided answer choices match $950. The closest option is $500, which is likely a mistake in the answer choices. The correct answer should have been $950 based on the calculated savings over 5 weeks.
3. Two boxes are stacked, one measuring 4 inches tall and the other 6 inches tall. What is the total height of the stacked boxes?
- A. 10 inches
- B. 12 inches
- C. 8 inches
- D. 9 inches
Correct answer: A
Rationale: To find the total height of the stacked boxes, you need to add the height of each box together. Therefore, 4 inches (height of the first box) + 6 inches (height of the second box) = 10 inches, which is the total height of the stacked boxes. Choice B (12 inches) is incorrect because it adds the heights incorrectly. Choice C (8 inches) is incorrect as it does not consider both box heights. Choice D (9 inches) is incorrect as it also does not add the heights accurately.
4. How many cubic inches of water could the aquarium hold if it were filled completely? (Dimensions: 30 in × 10 in × 12 in)
- A. 3600 cubic inches
- B. 52 cubic inches
- C. 312 cubic inches
- D. 1144 cubic inches
Correct answer: A
Rationale: To find the volume of the aquarium, we multiply its length, width, and height. The formula for the volume of a rectangular solid is V = l × w × h. Substituting the given dimensions, we get V = 30 × 10 × 12 = 3600 cubic inches. Therefore, the aquarium can hold 3600 cubic inches of water. Choice B (52 cubic inches), Choice C (312 cubic inches), and Choice D (1144 cubic inches) are incorrect as they do not correctly calculate the volume of the aquarium based on its dimensions.
5. In a class of 30 students, with 60% boys and 40% girls, how many girls are in the class?
- A. 18 girls
- B. 12 girls
- C. 15 girls
- D. 10 girls
Correct answer: B
Rationale: To find the number of girls in the class, we need to calculate 40% of the total number of students, which is 30. 40% of 30 is 0.40 * 30 = 12 girls. Therefore, there are 12 girls in the class. Choice A, 18 girls, is incorrect as it miscalculates the percentage. Choice C, 15 girls, is incorrect as it misrepresents the correct calculation. Choice D, 10 girls, is incorrect as it underestimates the number of girls in the class.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access