ATI TEAS 7
TEAS 7 Math Practice Test
1. Tom needs to buy ink cartridges and printer paper. Each ink cartridge costs $30. Each ream of paper costs $5. He has $100 to spend. Which of the following inequalities may be used to find the combinations of ink cartridges and printer paper he may purchase?
- A. 30c + 5p ≤ 100
- B. 30c + 5p = 100
- C. 30c + 5p > 100
- D. 30c + 5p < 100
Correct answer: A
Rationale: The correct inequality is 30c + 5p ≤ 100. This represents the combinations of ink cartridges (c) and printer paper (p) that Tom may purchase, ensuring the total cost is less than or equal to $100. Choice B is incorrect because the total cost should be less than or equal to $100, not equal to. Choices C and D are also incorrect as they indicate the total cost being greater than $100, which is not the case given Tom's budget limit.
2. Simplify the following expression: (1/4) × (3/5) ÷ 1 (1/8)
- A. 8/15
- B. 27/160
- C. 2/15
- D. 27/40
Correct answer: C
Rationale: First, convert the mixed number 1 (1/8) into an improper fraction: 1 (1/8) = 9/8. Now, simplify the expression: (1/4) × (3/5) ÷ (9/8). To divide by a fraction, multiply by its reciprocal: (1/4) × (3/5) × (8/9) = 24/180 = 2/15. Thus, the simplified expression is 2/15. Choice A (8/15) is incorrect because the correct answer is 2/15. Choice B (27/160) is incorrect as it is not the result of the given expression. Choice D (27/40) is incorrect as it does not match the simplified expression obtained.
3. A gift box has a length of 14 inches, a height of 8 inches, and a width of 6 inches. How many square inches of wrapping paper are needed to wrap the box?
- A. 56
- B. 244
- C. 488
- D. 672
Correct answer: C
Rationale: To find the surface area of a rectangular prism, you use the formula SA = 2lw + 2wh + 2hl, where l is the length, w is the width, and h is the height. Substituting the given dimensions, the calculation would be SA = 2(14)(6) + 2(6)(8) + 2(8)(14) = 168 + 96 + 224 = 488 square inches. Therefore, 488 square inches of wrapping paper are needed to wrap the box. Choice A (56), Choice B (244), and Choice D (672) are incorrect because they do not represent the correct surface area calculation for the given box dimensions.
4. What is the volume of a cube with a side length of 3 cm?
- A. 9 cm³
- B. 27 cm³
- C. 18 cm³
- D. 12 cm³
Correct answer: B
Rationale: To find the volume of a cube, you cube the length of one side. In this case, the side length is 3 cm, so the volume is calculated as 3 cm * 3 cm * 3 cm = 27 cm³. Therefore, the correct answer is 27 cm³. Choice A (9 cm³), Choice C (18 cm³), and Choice D (12 cm³) are incorrect as they do not correctly calculate the volume of a cube with a side length of 3 cm.
5. A car dealership’s commercials claim that this year’s models are 20% off the list price, plus they will pay the first 3 monthly payments. If a car is listed for $26,580, and the monthly payments are set at $250, what is the total potential savings?
- A. $1,282
- B. $5,566
- C. $6,066
- D. $20,514
Correct answer: C
Rationale: To calculate the total potential savings: First, find the 20% discount on the list price of $26,580: 0.20 × $26,580 = $5,316. Then, determine the savings over the first 3 months of payments: 3 months × $250/month = $750. Add the discount and the monthly payment savings to get the total potential savings: $5,316 + $750 = $6,066. Therefore, the correct answer is $6,066. Choice A, $1,282, is incorrect because it does not account for the total savings from both the discount and the monthly payments. Choice B, $5,566, is incorrect as it miscalculates the total savings by excluding the savings from the monthly payments. Choice D, $20,514, is incorrect as it does not consider the discount and only focuses on the list price.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access