ATI TEAS 7
TEAS Test Math Questions
1. Solve the system of equations. Equation 1: 2x + y = 0 Equation 2: x - 2y = 8
- A. (1.8, 3.6) and (-1.8, -3.6)
- B. (1.8, -3.6) and (-1.8, 3.6)
- C. (1.3, 2.6) and (-1.3, -2.6)
- D. (-1.3, 2.6) and (1.3, -2.6)
Correct answer: B
Rationale: From Equation 1: 2x + y = 0. Solve for y: y = -2x. Substitute y = -2x into Equation 2: x - 2(-2x) = 8. Simplify to x + 4x = 8, then 5x = 8, and x = 8 ÷ 5 = 1.6. Substitute x = 1.6 back into y = -2x to find y = -3.2. Therefore, one solution is (1.6, -3.2). To find the second solution, use -1.6 for x to get (-1.6, 3.2). Thus, the correct answer is B, representing the solutions (1.8, -3.6) and (-1.8, 3.6). Choices A, C, and D contain incorrect values that do not match the solutions derived from solving the system of equations.
2. What is a direct proportion? What is an inverse proportion?
- A. Direct: Both quantities increase or decrease together; Inverse: When one quantity increases, the other decreases by the same factor
- B. Direct: Both quantities decrease together; Inverse: When one quantity increases, the other increases
- C. Direct: One quantity stays the same while the other increases; Inverse: Both quantities increase together
- D. Direct: One quantity increases while the other decreases; Inverse: Both quantities decrease together
Correct answer: A
Rationale: In a direct proportion, both quantities increase or decrease together. This means that as one quantity goes up, the other also goes up, and vice versa. On the other hand, in an inverse proportion, when one quantity increases, the other decreases by the same factor. Therefore, choice A is correct as it accurately defines direct and inverse proportions. Choices B, C, and D are incorrect because they do not accurately describe the relationship between quantities in direct and inverse proportions.
3. A circular swimming pool has a circumference of 49 feet. What is the diameter of the pool?
- A. 15.6 feet
- B. 17.8 feet
- C. 49 feet
- D. 153.9 feet
Correct answer: A
Rationale: The formula for the circumference of a circle is C = πd, where C is the circumference and d is the diameter. Given C = 49 feet, we can rearrange the formula to solve for d: 49 feet = πd. To find the diameter, we divide both sides by π, giving us d = 49 feet / π ≈ 15.6 feet. Therefore, the diameter of the swimming pool is approximately 15.6 feet. Choices B, C, and D are incorrect because they do not align with the calculation based on the formula for the circumference of a circle.
4. University Q has an extremely competitive nursing program. Historically, 3/4 of the students in each incoming class major in nursing, but only 1/3 of those who major in nursing actually complete the program. If this year’s incoming class has 100 students, how many students will complete the nursing program?
- A. 75
- B. 20
- C. 25
- D. 5
Correct answer: C
Rationale: Out of 100 students, 3/4 major in nursing, which is 75 students (100 * 3/4 = 75). Among these 75 students, only 1/3 will complete the program. Therefore, 1/3 of 75 is 25. Hence, 25 students will complete the nursing program. Choice A (75) is incorrect because this represents the number of students majoring in nursing, not completing the program. Choices B (20) and D (5) are incorrect as they do not align with the calculation based on the given fractions and total number of students.
5. A homeowner has hired two people to mow his lawn. If person A is able to mow the lawn in 2 hours by herself and person B is able to mow the lawn in 3 hours by himself, what is the amount of time it would take for both person A and B to mow the lawn together?
- A. 5 hours
- B. 2.5 hours
- C. 1.2 hours
- D. 1 hour
Correct answer: C
Rationale: To find the combined work rate, you add the individual work rates: 1/2 + 1/3 = 5/6. This means that together, they can mow 5/6 of the lawn per hour. To determine how long it would take for both A and B to mow the entire lawn, you take the reciprocal of 5/6, which gives you 6/5 or 1.2 hours. Therefore, it would take 1.2 hours for person A and person B to mow the lawn together. Choice A (5 hours) is incorrect because it does not consider the combined efficiency of both workers. Choice B (2.5 hours) is incorrect as it does not reflect the correct calculation based on the combined work rates of the two individuals. Choice D (1 hour) is incorrect as it doesn't consider the fact that the combined rate is less than the individual rate of person A alone, thus taking longer than 1 hour.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access