ATI TEAS 7
TEAS Test Math Questions
1. Solve the system of equations. Equation 1: 2x + y = 0 Equation 2: x - 2y = 8
- A. (1.8, 3.6) and (-1.8, -3.6)
- B. (1.8, -3.6) and (-1.8, 3.6)
- C. (1.3, 2.6) and (-1.3, -2.6)
- D. (-1.3, 2.6) and (1.3, -2.6)
Correct answer: B
Rationale: From Equation 1: 2x + y = 0. Solve for y: y = -2x. Substitute y = -2x into Equation 2: x - 2(-2x) = 8. Simplify to x + 4x = 8, then 5x = 8, and x = 8 ÷ 5 = 1.6. Substitute x = 1.6 back into y = -2x to find y = -3.2. Therefore, one solution is (1.6, -3.2). To find the second solution, use -1.6 for x to get (-1.6, 3.2). Thus, the correct answer is B, representing the solutions (1.8, -3.6) and (-1.8, 3.6). Choices A, C, and D contain incorrect values that do not match the solutions derived from solving the system of equations.
2. The total perimeter of a rectangle is 36 cm. If the length of each side is 12 cm, what is the width?
- A. 3 cm
- B. 12 cm
- C. 6 cm
- D. 8 cm
Correct answer: C
Rationale: The formula for the perimeter of a rectangle is P = 2(l + w), where P is the perimeter, l is the length, and w is the width. Given that the total perimeter is 36 cm and each side's length is 12 cm, we substitute the values into the formula: 36 = 2(12 + w). Solving for w gives us w = 6. Therefore, the width of the rectangle is 6 cm. Choice A (3 cm) is incorrect because the width is not half of the length. Choice B (12 cm) is the length, not the width. Choice D (8 cm) is incorrect as it does not match the calculated width of 6 cm.
3. If a tree grows an average of 4.2 inches in a day, what is the rate of change in its height per month? Assume a month is 30 days.
- A. 0.14 inches per month
- B. 4.2 inches per month
- C. 34.2 inches per month
- D. 126 inches per month
Correct answer: D
Rationale: The tree grows at an average rate of 4.2 inches per day. To find the rate of change per month, multiply the daily growth rate by the number of days in a month (30 days): 4.2 inches/day × 30 days = 126 inches per month. Therefore, the rate of change in the tree's height is 126 inches per month, making option D the correct answer. Option A is incorrect because it miscalculates the rate based on daily growth. Option B is incorrect as it doesn't account for the total days in a month. Option C is incorrect as it overestimates the monthly growth rate.
4. What kind of relationship between a predictor and a dependent variable is indicated by a line that travels from the bottom-left of a graph to the upper-right of the graph?
- A. Positive
- B. Negative
- C. Exponential
- D. Logarithmic
Correct answer: A
Rationale: A line that travels from the bottom-left of a graph to the upper-right of the graph signifies a positive relationship between the predictor and dependent variable. This indicates that as the predictor variable increases, the dependent variable also increases. Choice B, 'Negative,' is incorrect as a negative relationship would be depicted by a line that travels from the top-left to the bottom-right of the graph. Choices C and D, 'Exponential' and 'Logarithmic,' respectively, represent specific types of relationships characterized by non-linear patterns, unlike the linear positive relationship shown in the described scenario.
5. How many cubic inches of water could the aquarium hold if it were filled completely? (Dimensions: 30 in × 10 in × 12 in)
- A. 3600 cubic inches
- B. 52 cubic inches
- C. 312 cubic inches
- D. 1144 cubic inches
Correct answer: A
Rationale: To find the volume of the aquarium, we multiply its length, width, and height. The formula for the volume of a rectangular solid is V = l × w × h. Substituting the given dimensions, we get V = 30 × 10 × 12 = 3600 cubic inches. Therefore, the aquarium can hold 3600 cubic inches of water. Choice B (52 cubic inches), Choice C (312 cubic inches), and Choice D (1144 cubic inches) are incorrect as they do not correctly calculate the volume of the aquarium based on its dimensions.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access