ATI TEAS 7
TEAS Practice Test Math
1. There are 800 students enrolled in four allied health programs at a local community college. The percentage of students in each program is displayed in the pie chart. What is the number of students enrolled in the respiratory care program?
- A. 336
- B. 152
- C. 144
- D. 168
Correct answer: B
Rationale: To find the number of students enrolled in the respiratory care program, you need to calculate 19% of 800. 19% of 800 is (19/100) * 800 = 152 students. Therefore, the correct answer is B. Choice A (336), Choice C (144), and Choice D (168) are incorrect as they do not represent the correct percentage of students enrolled in the respiratory care program as indicated by the pie chart.
2. What is the result of adding 7/8 and 5/8 and expressing the sum in reduced form?
- A. 9/17
- B. 1/3
- C. 31/36
- D. 3/5
Correct answer: C
Rationale: To add 7/8 and 5/8, we combine the numerators while keeping the denominator the same: 7/8 + 5/8 = (7+5)/8 = 12/8. To simplify this fraction, we divide both the numerator and the denominator by their greatest common factor, which is 4. This yields 12/8 = 3/2. Therefore, the reduced form of 7/8 + 5/8 is 3/2, which is also equivalent to 1.5 as a mixed number. However, the question specifically asks for the answer in reduced form, making choice C, 3/2 or 31/36 after further simplification, the correct answer. Choices A, B, and D are incorrect because they do not represent the correct result of adding 7/8 and 5/8 in reduced form.
3. What is the least common denominator for the fractions below? 1/2, 2/3, 4/5
- A. 30
- B. 25
- C. 7
- D. 19
Correct answer: A
Rationale: To find the least common denominator for fractions 1/2, 2/3, and 4/5, we need to identify the least common multiple of the denominators. The denominators are 2, 3, and 5. The least common multiple of 2, 3, and 5 is 30. Therefore, 30 is the least common denominator for these fractions. Choice B (25), C (7), and D (19) are incorrect because they are not the least common multiple of the denominators of the given fractions.
4. How can you visually differentiate between a histogram and a bar graph?
- A. A bar graph has gaps between the bars; a histogram does not
- B. A bar graph displays frequency; a histogram does not
- C. A histogram illustrates comparison; a bar graph does not
- D. A bar graph includes labels; a histogram does not
Correct answer: A
Rationale: The key difference between a histogram and a bar graph is that a bar graph has gaps between the bars, while a histogram does not. This feature helps in visually distinguishing between the two. Choice B is incorrect because both types of graphs can show frequency. Choice C is incorrect as both graphs can be used for comparison. Choice D is incorrect as both types of graphs can have labels for better understanding.
5. Solve the equation 8x − 6 = 3x + 24. Which of the following is the correct solution?
- A. x = 2.5
- B. x = 3.6
- C. x = 5
- D. x = 6
Correct answer: D
Rationale: To solve the equation 8x − 6 = 3x + 24, start by adding 6 to both sides: 8x − 6 + 6 = 3x + 24 + 6, which simplifies to 8x = 3x + 30. Next, subtract 3x from both sides to get 5x = 30. Finally, divide both sides by 5 to solve for x: x = 6. Therefore, the correct solution is x = 6. Choices A, B, and C are incorrect because they do not result from the correct algebraic manipulation of the equation.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access