ATI TEAS 7
TEAS Practice Math Test
1. Dr. Lee observed that 30% of all his patients developed an infection after taking a certain antibiotic. He further noticed that 5% of that 30% required hospitalization to recover from the infection. What percentage of Dr. Lee's patients were hospitalized after taking the antibiotic?
- A. 1.50%
- B. 5%
- C. 15%
- D. 30%
Correct answer: A
Rationale: To find the percentage of Dr. Lee's patients hospitalized after taking the antibiotic, we need to calculate 30% of 5%. First, convert 30% and 5% to decimals: 30% = 0.30 and 5% = 0.05. Multiply 0.30 by 0.05 to get 0.015. To convert 0.015 to a percentage, multiply by 100, resulting in 1.5%. Therefore, only 1.50% of Dr. Lee's patients were hospitalized after taking the antibiotic. Choice A is correct. Choice B (5%) is incorrect as it represents the percentage of patients who developed an infection and not those hospitalized. Choices C (15%) and D (30%) are also incorrect percentages as they do not accurately reflect the proportion of hospitalized patients in this scenario.
2. During January, Dr. Lewis worked 20 shifts. During February, she worked three times as many shifts as she did during January. During March, she worked half the number of shifts she worked during February. Which equation below describes the number of shifts Dr. Lewis worked in March?
- A. shifts = 20 + 3 + 1/2
- B. shifts = (20)(3)(1/2)
- C. shifts = (20)(3) + 1/2
- D. shifts = 20 + (3)(1/2)
Correct answer: B
Rationale: During January, Dr. Lewis worked 20 shifts. Shifts for January = 20. During February, she worked three times as many shifts as she did during January. Shifts for February = (20)(3) = 60. During March, she worked half the number of shifts she worked in February. Shifts for March = (60)(1/2) = 30. Therefore, the correct equation to describe the number of shifts Dr. Lewis worked in March is 'shifts = (20)(3)(1/2)', representing the calculation based on the given scenario. Choices A, C, and D do not accurately represent the correct mathematical relationship between the shifts worked in the different months, making them incorrect.
3. A recipe calls for 5.5 teaspoons of vanilla. 1 teaspoon equals approximately 4.93 mL. Which of the following is the correct amount of vanilla in mL?
- A. 10.2 mL
- B. 12 mL
- C. 7.43 mL
- D. 27 mL
Correct answer: D
Rationale: To convert the amount of vanilla from teaspoons to milliliters, we multiply the number of teaspoons by the conversion factor of 4.93 mL/teaspoon. 5.5 teaspoons * 4.93 mL/teaspoon = 27.115 mL, which rounds to 27 mL. Therefore, the correct amount of vanilla in mL is 27 mL. Choice A (10.2 mL), Choice B (12 mL), and Choice C (7.43 mL) are incorrect as they do not correctly convert the given amount of teaspoons to milliliters based on the provided conversion factor.
4. Which of the following numbers is the largest?
- A. 0.45
- B. 0.096
- C. 0.3
- D. 0.313
Correct answer: A
Rationale: Among the provided options, 0.45 is the largest number. To determine the largest number, compare the decimal values directly. 0.45 is greater than 0.313, 0.3, and 0.096. Therefore, 0.45 is the correct answer. Choice B (0.096) is the smallest as it has the lowest decimal value. Choice C (0.3) is greater than 0.096 but smaller than both 0.313 and 0.45. Choice D (0.313) is greater than 0.3 and 0.096 but smaller than 0.45, making it incorrect.
5. What is the volume of a cube with a side length of 3 cm?
- A. 9 cm³
- B. 27 cm³
- C. 18 cm³
- D. 12 cm³
Correct answer: B
Rationale: To find the volume of a cube, you cube the length of one side. In this case, the side length is 3 cm, so the volume is calculated as 3 cm * 3 cm * 3 cm = 27 cm³. Therefore, the correct answer is 27 cm³. Choice A (9 cm³), Choice C (18 cm³), and Choice D (12 cm³) are incorrect as they do not correctly calculate the volume of a cube with a side length of 3 cm.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access