a book has a width of 5 decimeters what is the width of the book in centimeters
Logo

Nursing Elites

ATI TEAS 7

TEAS Test Practice Math

1. A book has a width of 5 decimeters. What is the width of the book in centimeters?

Correct answer: B

Rationale: To convert decimeters to centimeters, you need to multiply by 10 since 1 decimeter is equal to 10 centimeters. Therefore, to find the width of the book in centimeters, multiply 5 decimeters by 10: 5 decimeters * 10 = 50 centimeters. This means the width of the book is 50 centimeters, making choice B, "25 centimeters," the correct answer. Choices A, C, and D are incorrect because they do not correctly convert decimeters to centimeters.

2. There are 20 mg of acetaminophen in concentrated infant drops. If the proper dosage for a four-year-old child is 240 mg, how many milliliters should the child receive?

Correct answer: C

Rationale: To find the correct dosage in milliliters, divide the total required dosage in milligrams (240 mg) by the concentration of the medication in milligrams per milliliter (20 mg/mL). This calculation yields 12 mL, which is the recommended volume for the child. Choice A, 0.8 mL, is incorrect as it does not correspond to the correct dosage. Choice B, 1.6 mL, is incorrect because it also does not match the calculated dosage. Choice D, 3.2 mL, is incorrect as it is not the accurate result of the dosage calculation. Therefore, the correct answer is C, 2.4 mL.

3. Which of the following equations does not represent a function?

Correct answer: C

Rationale: An equation represents a function if each input (x-value) corresponds to exactly one output (y-value). In the equation x = y^2, for a single x-value, there are two possible y-values (positive and negative square root), violating the definition of a function. This violates the vertical line test, where a vertical line intersects the graph in more than one point for non-functions. Choices A, B, and D all pass the vertical line test and represent functions, making them incorrect answers.

4. Solve for x: 3(x - 5) = 2(x + 3)

Correct answer: A

Rationale: To solve the equation 3(x - 5) = 2(x + 3) for x, start by distributing the terms inside the parentheses. This gives you 3x - 15 = 2x + 6. Next, combine like terms by moving all terms with x to one side and the constants to the other side. Subtracting 2x from both sides gives x - 15 = 6. Finally, adding 15 to both sides results in x = 21. Therefore, the correct answer is A: x = 3. Choices B, C, and D are incorrect as they do not result from the correct calculations of the equation.

5. Robert secures three new clients every eight months. After how many months has he secured 24 new clients?

Correct answer: C

Rationale: To determine the number of months it takes for Robert to secure 24 new clients, we set up a proportion: 3 clients / 8 months = 24 clients / x months. Cross multiplying gives 3x = 8 * 24. Solving for x results in x = 64 / 3 = 52. Therefore, after 52 months, Robert has secured 24 new clients. Choice A (64) is incorrect as it miscalculates the solution. Choices B (58) and D (66) are also incorrect as they do not reflect the accurate calculation based on the given information.

Similar Questions

As a company's stocks increase, production, sales, and investments also increase. Which of the following is the independent variable?
Express as an improper fraction: 8 3/7
"is" in math means what?
As part of a study, a set of patients will be divided into three groups. 4/15 of the patients will be in Group Alpha, 2/5 in Group Beta, and 1/3 in Group Gamma. Order the groups from smallest to largest, according to the number of patients in each group.
A taxi service charges $50 for the first mile, $50 for each additional mile, and 20ยข per minute of waiting time. Joan took a cab from her place to a flower shop 8 miles away, where she bought a bouquet, then another 6 miles to her mother's place. The driver had to wait 9 minutes while she bought the bouquet. What was the fare?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$1/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses