ATI TEAS 7
Math Practice TEAS Test
1. Robert plans to drive 1,800 miles. His car gets 30 miles per gallon, and his tank holds 12 gallons. How many tanks of gas will he need for the trip?
- A. 4 tanks
- B. 5 tanks
- C. 6 tanks
- D. 7 tanks
Correct answer: B
Rationale: To calculate how many gallons of gas Robert needs for the 1,800-mile trip, divide the total distance by the car's mileage per gallon: 1,800 miles ÷ 30 mpg = 60 gallons. Since his tank holds 12 gallons, Robert will need 60 gallons ÷ 12 gallons per tank = 5 tanks of gas for the trip. Choice A (4 tanks), Choice C (6 tanks), and Choice D (7 tanks) are incorrect as they do not correctly calculate the number of tanks needed based on the car's mileage and tank capacity.
2. Adam is painting the outside of a 4-walled shed. The shed is 5 feet wide, 4 feet deep, and 7 feet high. Which of the following is the amount of paint Adam will need for the four walls?
- A. 80 ft²
- B. 126 ft²
- C. 140 ft²
- D. 560 ft²
Correct answer: B
Rationale: To find the amount of paint needed for the four walls of the shed, calculate the total area of the four walls. The shed has two pairs of identical walls. The area of one pair of walls is 5 feet (width) x 7 feet (height) + 4 feet (depth) x 7 feet (height) = 35 ft² + 28 ft² = 63 ft². Since there are two pairs of walls, the total area for the four walls is 2 x 63 ft² = 126 ft². Therefore, Adam will need 126 ft² of paint for the four walls. Choice A, 80 ft², is incorrect as it does not account for the total surface area of all four walls. Choice C, 140 ft², is incorrect as it overestimates the area required. Choice D, 560 ft², is incorrect as it significantly overestimates the amount of paint needed for the shed.
3. Jonathan pays a $65 monthly flat rate for his cell phone. He is charged $0.12 per minute for each minute used in a roaming area. Which of the following expressions represents his monthly bill for x roaming minutes?
- A. 65 + 0.12x
- B. 65x + 0.12
- C. 65.12x
- D. 65 + 0.12x
Correct answer: A
Rationale: The correct expression for Jonathan's monthly bill is 65 + 0.12x, where x represents the number of roaming minutes. The $65 monthly flat rate is added to the product of $0.12 per minute and the number of roaming minutes (x). Choice B is incorrect because it incorrectly multiplies the flat rate by x and adds the per-minute charge. Choice C is incorrect as it combines the flat rate and the per-minute charge into a single value. Choice D is incorrect as it incorrectly multiplies the flat rate by x and adds the per-minute charge separately.
4. The first midwife uses 2/5 of her monthly contribution to pay for rent and utilities. She saves half of the remainder for incidental expenditures, and uses the rest of the money to purchase medical supplies. How much money does she spend on medical supplies each month?
- A. $600
- B. $800
- C. $1,000
- D. $1,200
Correct answer: A
Rationale: The first midwife contributes $2000. She spends $800 on rent and utilities. After paying for rent and utilities, $1200 remains. Half of this amount, which is $600, is saved for incidental expenditures. Therefore, the first midwife spends the remaining $600 on purchasing medical supplies each month. Choice A, $600, is the correct answer. Choices B, C, and D are incorrect as they do not accurately reflect the amount spent on medical supplies as calculated in the given scenario.
5. A teacher asked all the students in the class which days of the week they get up after 8 a.m. Which of the following is the best way to display the frequency for each day of the week?
- A. Histogram
- B. Pie chart
- C. Bar graph
- D. Scatter plot
Correct answer: A
Rationale: A histogram is the best way to display the frequency for each day of the week in this scenario. Histograms are ideal for showing the distribution of numerical data by dividing it into intervals and representing the frequency of each interval with bars. In this case, each day of the week can be represented as a category with the frequency of students getting up after 8 a.m. displayed on the vertical axis. Choice B, a pie chart, would not be suitable for this scenario as it is more appropriate for showing parts of a whole, not frequency distributions. Choice C, a bar graph, could potentially work but is more commonly used to compare different categories rather than displaying frequency distribution data. Choice D, a scatter plot, is used to show the relationship between two variables and is not the best choice for displaying frequency for each day of the week.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access