ATI TEAS 7
TEAS Practice Test Math
1. Which of the following is the correct decimal placement for the product of 1.6 * 0.93?
- A. 14.88
- B. 0.1488
- C. 1.488
- D. 0.001488
Correct answer: C
Rationale: To find the product of 1.6 * 0.93, you multiply these two numbers to get 1.488. Therefore, the correct decimal placement for the product is 1.488. Choice A, 14.88, is incorrect as it incorrectly places the decimal two spots to the right. Choice B, 0.1488, is incorrect as it incorrectly places the decimal one spot to the right. Choice D, 0.001488, is incorrect as it incorrectly places the decimal three spots to the right.
2. A closet is filled with red, blue, and green shirts. If 2/5 of the shirts are green and 1/3 are red, what fraction of the shirts are blue?
- A. 4/15
- B. 1/5
- C. 7/15
- D. 1/2
Correct answer: C
Rationale: To find the fraction of blue shirts, subtract the fractions of green and red shirts from 1. Green shirts are 2/5 and red shirts are 1/3, which sum up to 11/15. Therefore, blue shirts would be 1 - 11/15 = 4/15. So, the correct answer is 4/15. Choice A (4/15) is incorrect as it represents the overall fraction of green shirts. Choice B (1/5) is incorrect as it does not account for the fractions of green and red shirts. Choice D (1/2) is incorrect as it does not consider the given fractions of green and red shirts.
3. In a city with a population of 51,623, 9.5% of the population voted for a new proposition. How many people approximately voted?
- A. 3,000 people
- B. 5,000 people
- C. 7,000 people
- D. 10,000 people
Correct answer: B
Rationale: To find the number of people who voted, you need to calculate 9.5% of the total population of 51,623. 9.5% of 51,623 is approximately 0.095 x 51,623 = 4,999.85, which is rounded to approximately 5,000 people. Therefore, the correct answer is 5,000 people. Choice A, 3,000 people, is incorrect as it is lower than the calculated value. Choice C, 7,000 people, is incorrect as it is higher than the calculated value. Choice D, 10,000 people, is incorrect as it is much higher than the calculated value.
4. Solve the following equation: 3(2y+50)−4y=500
- A. y = 125
- B. y = 175
- C. y = 150
- D. y = 200
Correct answer: B
Rationale: To solve the equation 3(2y+50)−4y=500, first distribute to get 6y+150−4y=500. Combining like terms results in 2𝑦 + 150 = 500. By subtracting 150 from both sides, we get 2y = 350. Dividing by 2 gives y = 175. Therefore, the correct answer is B. Choices A, C, and D are incorrect because they do not correctly follow the steps of distributing, combining like terms, and isolating the variable to solve for y.
5. x ÷ 7 = x − 36. Solve the equation. Which of the following is correct?
- A. x = 6
- B. x = 42
- C. x = 4
- D. x = 252
Correct answer: B
Rationale: To solve the equation x ÷ 7 = x − 36, start by multiplying both sides by 7 to get 7(x ÷ 7) = 7(x − 36), which simplifies to x = 7x − 252. Next, subtract 7x from both sides to get -6x = -252. Finally, divide both sides by -6 to solve for x, which results in x = 42. Therefore, the correct answer is x = 42. Choice A (x = 6), Choice C (x = 4), and Choice D (x = 252) are incorrect as they do not align with the correct solution derived from the equation.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access