jerry needs to load four pieces of equipment onto a factory elevator that has a weight limit of 800 pounds jerry weighs 200 pounds what would the aver
Logo

Nursing Elites

ATI TEAS 7

TEAS Practice Math Test

1. Jerry needs to load four pieces of equipment onto a factory elevator that has a weight limit of 800 pounds. Jerry weighs 200 pounds. What would be the average weight of each item so that the elevator's weight limit is not exceeded?

Correct answer: B

Rationale: To find the average weight per item, subtract Jerry's weight from the elevator's weight limit: 800 - 200 = 600 pounds. Since there are 4 items, divide 600 by 4 to determine that each item should weigh 150 pounds. Choice A (128 pounds), C (175 pounds), and D (180 pounds) are incorrect as they do not correctly calculate the average weight per item to ensure the elevator's weight limit is not exceeded.

2. If a person spends 1/4 of their day sleeping, how many hours do they spend sleeping?

Correct answer: A

Rationale: To calculate the number of hours a person spends sleeping when 1/4 of the day is spent sleeping, you need to find 1/4 of 24 hours. 1/4 of 24 hours is 6 hours, so the correct answer is A. Choice B (8 hours) is incorrect because it does not correspond to 1/4 of a day. Choice C (4 hours) is incorrect as it is half of the correct answer. Choice D (5 hours) is incorrect as it does not match the calculation for 1/4 of a day.

3. What is the GCF (greatest common factor)?

Correct answer: A

Rationale: The greatest common factor (GCF) of a set of numbers is the largest factor that all the numbers share. This factor represents the highest number that can evenly divide each of the numbers in the set without any remainder. Choice B, 'The smallest factor that all the numbers share,' is incorrect because the GCF is the greatest, not the smallest, factor. Choices C and D, 'The largest multiple that all the numbers share' and 'The smallest multiple that all the numbers share,' are also incorrect as the GCF refers to factors, not multiples.

4. Apply the polynomial identity to rewrite (a + b)².

Correct answer: C

Rationale: When you see something like (a + b)², it means you're multiplying (a + b) by itself: (a + b)² = (a + b) × (a + b) To expand this, we use the distributive property (which says you multiply each term in the first bracket by each term in the second bracket): Multiply the first term in the first bracket (a) by both terms in the second bracket: a × a = a² a × b = ab Multiply the second term in the first bracket (b) by both terms in the second bracket: b × a = ab b × b = b² Now, add up all the results from the multiplication: a² + ab + ab + b² Since ab + ab is the same as 2ab, we can simplify it to: a² + 2ab + b² So, (a + b)² = a² + 2ab + b². This is known as a basic polynomial identity, and it shows that when you square a binomial (a two-term expression like a + b), you get three terms: the square of the first term (a²), twice the product of the two terms (2ab), and the square of the second term (b²). Therefore, the correct answer is C (a² + 2ab + b²)

5. A couple dining at a restaurant receives a bill for $58.60. They wish to leave a 16% gratuity. Which of the following is the estimated gratuity?

Correct answer: C

Rationale: To calculate a 16% gratuity on a bill of $58.60, you multiply $58.60 by 0.16, which equals $9.376. Rounding this to the nearest cent gives $9.38. Therefore, the estimated gratuity is $9.38. Choice A is incorrect as it does not accurately reflect the calculated amount. Choice B is also incorrect as it does not match the correct calculation. Choice D is incorrect as it is not the nearest estimated value to the calculated amount.

Similar Questions

The cost of renting a car is $50 per day plus $0.25 per mile driven. If a customer rents the car for 3 days and drives 120 miles, what is the total cost?
What number is equivalent to -3 + 2 * 8 + 3?
Solve for x: 2x + 4 = x - 6
Two boxes are stacked, one measuring 4 inches tall and the other 6 inches tall. What is the total height of the stacked boxes?
Solve for x: x + 5 = x - 3.

Access More Features

ATI TEAS Premium Plus
$150/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses