jerry needs to load four pieces of equipment onto a factory elevator that has a weight limit of 800 pounds jerry weighs 200 pounds what would the aver
Logo

Nursing Elites

ATI TEAS 7

TEAS Practice Math Test

1. Jerry needs to load four pieces of equipment onto a factory elevator that has a weight limit of 800 pounds. Jerry weighs 200 pounds. What would be the average weight of each item so that the elevator's weight limit is not exceeded?

Correct answer: B

Rationale: To find the average weight per item, subtract Jerry's weight from the elevator's weight limit: 800 - 200 = 600 pounds. Since there are 4 items, divide 600 by 4 to determine that each item should weigh 150 pounds. Choice A (128 pounds), C (175 pounds), and D (180 pounds) are incorrect as they do not correctly calculate the average weight per item to ensure the elevator's weight limit is not exceeded.

2. 3(x-2)=12. Solve the equation above for x. Which of the following is the correct answer?

Correct answer: A

Rationale: To solve the equation 3(x-2)=12, first distribute the 3: 3x - 6 = 12. Next, isolate x by adding 6 to both sides: 3x = 18. Finally, divide by 3 to find x: x = 6. Therefore, the correct answer is A (6). Choice B (-2) is incorrect as it does not satisfy the equation. Choice C (-4) is also incorrect as it does not satisfy the equation. Choice D (2) is incorrect as it does not satisfy the equation either.

3. The length of a rectangle is 3 times its width. If the width is 4 inches, what is the perimeter of the rectangle?

Correct answer: A

Rationale: To find the perimeter of a rectangle, you add up all its sides. Given that the width is 4 inches and the length is 3 times the width (3 * 4 = 12 inches), the perimeter formula is 2 * (length + width). Substituting the values, we get 2 * (12 + 4) = 2 * 16 = 32 inches. Therefore, the correct answer is 32 inches. Choices B, C, and A are incorrect because they do not reflect the correct calculation of the rectangle's perimeter.

4. Which of the following percentages is equivalent to 5 ¼?

Correct answer: A

Rationale: To convert a mixed number to a decimal, 5 ¼ becomes 5.25. To convert this decimal to a percentage, you multiply it by 100. Therefore, 5.25 × 100 = 525%. Choice A is correct. Choice B (514%) is incorrect as it does not match the equivalent of 5 ¼. Choice C (5.25%) is the decimal equivalent of 5 ¼, not the percentage. Choice D (5.14%) is a different value and does not represent the percentage equivalent of 5 ¼.

5. Joshua is taking a test with 30 questions. To qualify for an academic scholarship, he needs to answer at least 80% of the questions correctly. What is the minimum number of questions Joshua must answer correctly to qualify for the scholarship?

Correct answer: B

Rationale: To qualify for an academic scholarship, Joshua needs to answer at least 80% of the 30 test questions correctly. 80% of 30 is 24, so Joshua must answer at least 24 questions correctly to qualify for the scholarship. Choice A (23) is incorrect as it is below the minimum required percentage. Choices C (26) and D (27) are also incorrect as they exceed the minimum number of questions Joshua needs to answer correctly for the scholarship.

Similar Questions

Lauren must travel a distance of 1,480 miles to get to her destination. She plans to drive approximately the same number of miles per day for 5 days. Which of the following is a reasonable estimate of the number of miles she will drive per day?
A lab technician took 500 milliliters of blood from a patient. The technician used 1/6 of the blood for further tests. How many milliliters of blood were used for further tests? Round your answer to the nearest hundredth.
Which is bigger, a mile or a kilometer? What's the conversion factor?
Complete the following equation: x + x * x - x / x = ?
A rectangular field has an area of 1452 square feet. If the length is three times the width, what is the width of the field?

Access More Features

ATI TEAS Premium Plus
$150/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses