express as an improper fraction
Logo

Nursing Elites

ATI TEAS 7

TEAS Test Math Prep

1. If a car travels 150 miles in 3 hours, what is the car's average speed in miles per hour?

Correct answer: B

Rationale: To calculate the average speed, use the formula: Average speed = Total distance / Total time. In this case, Average speed = 150 miles / 3 hours = 50 mph. Therefore, the car's average speed is 50 miles per hour. Choice A (45 mph), Choice C (55 mph), and Choice D (60 mph) are incorrect as they do not match the correct calculation based on the given distance and time values.

2. What is the result of the expression 102 – 7(3 – 4) – 25? Which of the following is correct?

Correct answer: D

Rationale: To simplify the expression, we follow the order of operations (PEMDAS): Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right). First, solve inside the parentheses: 3 - 4 = -1. Then, multiply -1 by 7: -1 * 7 = -7. Now, substitute these values back into the expression: 102 - (-7) - 25 = 102 + 7 - 25 = 109 - 25 = 84. Therefore, the correct answer is 84. Choices A, B, and C are incorrect as they do not represent the correct simplification of the given expression.

3. What is the probability of flipping a coin and getting heads?

Correct answer: A

Rationale: The correct answer is A: 1/2. When flipping a fair coin, there are two possible outcomes: heads or tails. The probability of getting heads is 1 out of 2 possible outcomes, which can be expressed as 1/2. Choice B, 1/3, is incorrect because a fair coin only has two sides. Choices C and D, 1/4 and 1/5, are also incorrect as they do not represent the correct probability of getting heads when flipping a coin.

4. There are 80 mg in 0.8 mL of Acetaminophen Concentrated Infant Drops. If the proper dosage for a four-year-old child is 240 mg, how many milliliters should the child receive?

Correct answer: C

Rationale: To find out how many milliliters the child should receive, divide the total required dosage of 240 mg by the concentration of the medication, which is 80 mg per 0.8 mL. 240 mg ÷ 80 mg/mL = 3 mL. Since each dose is 0.8 mL, the total dosage for the child would be 3 doses x 0.8 mL per dose = 2.4 mL. Therefore, the correct answer is 2.4 mL. Choice A (0.8 mL) is the concentration of the medication, not the total dose. Choices B (1.6 mL) and D (3.2 mL) are incorrect calculations that do not consider the concentration of the medication and the total required dosage correctly.

5. What is the mean for the data set 16, 18, 17, 15, 19, 14, 12, 11, 10, 16, 18, and 17?

Correct answer: C

Rationale: To find the mean of a data set, you add up all the values and then divide by the total number of values. In this case, the sum of the data set is 185. Dividing this sum by the total number of values (12) gives you a mean of 16. Therefore, the correct answer is 16. Choice A (14.25), Choice B (15.25), and Choice D (17) are incorrect because they do not accurately represent the average value of the given data set.

Similar Questions

If the width of a rectangle is 4 inches (in) and the area of the rectangle is 32 in², what is the length of the rectangle?
Arrange the following fractions from least to greatest: 2/3, 1/2, 5/8, 7/9.
The cost, in dollars, of shipping x computers to California for sale is 3000 + 100x. The amount received when selling these computers is 400x dollars. What is the least number of computers that must be shipped and sold so that the amount received is at least equal to the shipping cost?
How many quarts are in 1 liter?
After taking a certain antibiotic, Dr. Lee observed that 30% of all his patients developed an infection. He further noticed that 5% of those patients required hospitalization to recover from the infection. What percentage of Dr. Lee’s patients were hospitalized after taking the antibiotic?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses