ATI TEAS 7
TEAS Test Math Questions
1. Solve |x| = 10.
- A. -10, 10
- B. -11, 11
- C. -12, 12
- D. -13, 13
Correct answer: A
Rationale: The absolute value of x is equal to 10 when x is either -10 or 10. Therefore, the correct answer is A. Choices B, C, and D are incorrect because they do not satisfy the equation |x| = 10. For choice B, -11 and 11 do not satisfy the condition. Choices C and D also do not provide solutions that meet the equation's requirement.
2. Which of the following algebraic equations correctly represents the sentence 'Four more than a number, x, is 2 less than 1/3 of another number, y'?
- A. x + 4 = (1/3)y - 2
- B. 4x = 2 - (1/3)y
- C. 4 - x = 2 + (1/3)y
- D. x + 4 = 2 - (1/3)y
Correct answer: A
Rationale: To represent 'Four more than a number, x', we write x + 4. This is equal to '2 less than 1/3 of another number, y', which translates to 1/3y - 2. Therefore, the correct equation is x + 4 = (1/3)y - 2. Choice B is incorrect as it incorrectly combines the values of x and y. Choice C is incorrect as it doesn't properly relate x and y with the given conditions. Choice D is incorrect as it doesn't correctly represent the relationship between x and y according to the given statement.
3. The total perimeter of a rectangle is 36 cm. If the length of each side is 12 cm, what is the width?
- A. 3 cm
- B. 12 cm
- C. 6 cm
- D. 8 cm
Correct answer: C
Rationale: The formula for the perimeter of a rectangle is P = 2(l + w), where P is the perimeter, l is the length, and w is the width. Given that the total perimeter is 36 cm and each side's length is 12 cm, we substitute the values into the formula: 36 = 2(12 + w). Solving for w gives us w = 6. Therefore, the width of the rectangle is 6 cm. Choice A (3 cm) is incorrect because the width is not half of the length. Choice B (12 cm) is the length, not the width. Choice D (8 cm) is incorrect as it does not match the calculated width of 6 cm.
4. What defines a proper fraction versus an improper fraction?
- A. Proper: numerator < denominator; Improper: numerator > denominator
- B. Proper: numerator > denominator; Improper: numerator < denominator
- C. Proper: numerator = denominator; Improper: numerator < denominator
- D. Proper: numerator < denominator; Improper: numerator = denominator
Correct answer: A
Rationale: A proper fraction is characterized by having a numerator smaller than the denominator, while an improper fraction has a numerator larger than the denominator. Therefore, choice A is correct. Choice B is incorrect because it states the opposite relationship between the numerator and denominator for proper and improper fractions. Choice C is incorrect as it describes a fraction where the numerator is equal to the denominator, which is a different concept. Choice D is incorrect as it associates a numerator being smaller than the denominator with an improper fraction, which is inaccurate.
5. A student gets an 85% on a test with 20 questions. How many answers did the student solve correctly?
- A. 15
- B. 16
- C. 17
- D. 18
Correct answer: C
Rationale: To determine the number of questions the student solved correctly, we need to calculate 85% of the total number of questions. This can be done by multiplying the total number of questions by 85%, which is 20 questions x 85% = 20 x 0.85 = 17 questions. Therefore, the student solved 17 questions correctly. Choice A, 15, is incorrect as it does not reflect the correct percentage of questions solved. Choice B, 16, and Choice D, 18, are also incorrect as they do not match the calculation based on the given percentage.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access