ATI TEAS 7
TEAS Practice Math Test
1. While at the local ice skating rink, Cora went around the rink 27 times in total. She slipped and fell 20 of the 27 times she skated around the rink. What approximate percentage of the times around the rink did Cora not slip and fall?
- A. 37%
- B. 74%
- C. 26%
- D. 15%
Correct answer: C
Rationale: To find the approximate percentage of the times Cora did not slip and fall, subtract the times she fell (20) from the total times around the rink (27), which gives 7. Then, divide the number of times she did not slip and fall (7) by the total times around the rink (27) and multiply by 100 to get the percentage. So, 7 divided by 27 equals 0.259, which rounds to approximately 26%. Therefore, the correct answer is 26%. Choice A (37%) is incorrect because it does not reflect the calculation based on the given information. Choice B (74%) is incorrect as it is not the result of the correct calculation. Choice D (15%) is incorrect as it does not match the calculated percentage based on the scenario provided.
2. Which of the following options correctly orders the numbers below from least to greatest? 235.971, 145.884, -271.906, -193.823
- A. -271.906, -193.823, 145.884, 235.971
- B. -271.906, 235.971, -193.823, 145.884
- C. 145.884, -193.823, 235.971, -271.906
- D. -193.823, -271.906, 145.884, 235.971
Correct answer: A
Rationale: To correctly order the numbers from least to greatest, we start with the smallest number, which is -271.906, followed by -193.823, 145.884, and finally 235.971. Therefore, the correct order is -271.906, -193.823, 145.884, 235.971. Choice A is correct. Choice B is incorrect as it incorrectly places 235.971 before -193.823. Choice C is incorrect as it starts with the largest number, 145.884. Choice D is incorrect as it starts with -193.823, which is not the smallest number in the list.
3. What is the area of the largest circle that can fit entirely inside a rectangle that measures 8 centimeters by 10 centimeters?
- A. 18π cm²
- B. 10π cm²
- C. 16π cm²
- D. 8π cm²
Correct answer: C
Rationale: The largest circle that can fit inside the rectangle would have a diameter of 8 cm, which means the radius is half of the diameter, thus 4 cm. The area of a circle is calculated using the formula A = πr², where r is the radius. Substituting the radius value into the formula, the area of the circle is π(4)² = 16π cm². Therefore, the correct answer is 16π cm². Choice A (18π cm²), B (10π cm²), and D (8π cm²) are incorrect because they do not represent the area of the largest circle that fits inside the given rectangle.
4. A man decided to buy new furniture from Futuristic Furniture for $2,600. Futuristic Furniture gave the man two choices: pay the entire amount in one payment with cash, or pay $1,000 as a down payment and $120 per month for two full years in the financing plan. If the man chooses the financing plan, how much more would he pay?
- A. $1,480 more
- B. $1,280 more
- C. $1,600 more
- D. $2,480 more
Correct answer: B
Rationale: To calculate the total cost with the financing plan, multiply $120 by 24 months to get $2,880. Adding the $1,000 down payment gives a total of $3,880. By comparing this total with the initial cost of $2,600 when paying in cash, the man would pay $1,280 more with the financing plan. Choice A, $1,480 more, is incorrect because it miscalculates the additional amount. Choice C, $1,600 more, is incorrect as it overestimates the extra cost. Choice D, $2,480 more, is incorrect as it significantly overstates the additional payment.
5. Which of the following is the decimal form of 87.5%?
- A. 875
- B. 8,750
- C. 0.875
- D. 8.75
Correct answer: C
Rationale: To convert a percentage to a decimal, you move the decimal point two places to the left. Therefore, 87.5% as a decimal is 0.875. Choice A (875) is incorrect as it represents the percentage without converting to a decimal. Choice B (8,750) is incorrect as it represents the percentage in whole numbers without decimal conversion. Choice D (8.75) is incorrect as it represents 875% instead of 87.5%.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access