ATI TEAS 7
TEAS Practice Math Test
1. While at the local ice skating rink, Cora went around the rink 27 times in total. She slipped and fell 20 of the 27 times she skated around the rink. What approximate percentage of the times around the rink did Cora not slip and fall?
- A. 37%
- B. 74%
- C. 26%
- D. 15%
Correct answer: C
Rationale: To find the approximate percentage of the times Cora did not slip and fall, subtract the times she fell (20) from the total times around the rink (27), which gives 7. Then, divide the number of times she did not slip and fall (7) by the total times around the rink (27) and multiply by 100 to get the percentage. So, 7 divided by 27 equals 0.259, which rounds to approximately 26%. Therefore, the correct answer is 26%. Choice A (37%) is incorrect because it does not reflect the calculation based on the given information. Choice B (74%) is incorrect as it is not the result of the correct calculation. Choice D (15%) is incorrect as it does not match the calculated percentage based on the scenario provided.
2. Express the solution to the following problem in decimal form:
- A. 0.042
- B. 84%
- C. 0.84
- D. 0.42
Correct answer: C
Rationale: The correct answer is C: 0.84. To convert a percentage to a decimal, you divide the percentage value by 100. In this case, 84% divided by 100 equals 0.84. Choice A, 0.042, is not the correct conversion of 84%. Choice B, 84%, is already in percentage form and needs to be converted to a decimal. Choice D, 0.42, is not the correct conversion of 84% either. Therefore, the correct decimal form of 84% is 0.84.
3. There are 80 mg in 0.8 mL of Acetaminophen Concentrated Infant Drops. If the proper dosage for a four-year-old child is 240 mg, how many milliliters should the child receive?
- A. 0.8 mL
- B. 1.6 mL
- C. 2.4 mL
- D. 3.2 mL
Correct answer: C
Rationale: To find out how many milliliters the child should receive, divide the total required dosage of 240 mg by the concentration of the medication, which is 80 mg per 0.8 mL. 240 mg ÷ 80 mg/mL = 3 mL. Since each dose is 0.8 mL, the total dosage for the child would be 3 doses x 0.8 mL per dose = 2.4 mL. Therefore, the correct answer is 2.4 mL. Choice A (0.8 mL) is the concentration of the medication, not the total dose. Choices B (1.6 mL) and D (3.2 mL) are incorrect calculations that do not consider the concentration of the medication and the total required dosage correctly.
4. Simplify the following expression: (2/7) ÷ (5/6)
- A. 2/5
- B. 35/15
- C. 5/21
- D. 12/35
Correct answer: D
Rationale: To divide fractions, you multiply the first fraction by the reciprocal of the second fraction. In this case, (2/7) ÷ (5/6) becomes (2/7) × (6/5) = 12/35. Therefore, the correct answer is 12/35. Choice A (2/5), choice B (35/15), and choice C (5/21) are incorrect because they do not correctly simplify the given expression.
5. How can you visually differentiate between a histogram and a bar graph?
- A. A bar graph has gaps between the bars; a histogram does not
- B. A bar graph displays frequency; a histogram does not
- C. A histogram illustrates comparison; a bar graph does not
- D. A bar graph includes labels; a histogram does not
Correct answer: A
Rationale: The key difference between a histogram and a bar graph is that a bar graph has gaps between the bars, while a histogram does not. This feature helps in visually distinguishing between the two. Choice B is incorrect because both types of graphs can show frequency. Choice C is incorrect as both graphs can be used for comparison. Choice D is incorrect as both types of graphs can have labels for better understanding.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access