ATI TEAS 7
TEAS Practice Math Test
1. While at the local ice skating rink, Cora went around the rink 27 times in total. She slipped and fell 20 of the 27 times she skated around the rink. What approximate percentage of the times around the rink did Cora not slip and fall?
- A. 37%
- B. 74%
- C. 26%
- D. 15%
Correct answer: C
Rationale: To find the approximate percentage of the times Cora did not slip and fall, subtract the times she fell (20) from the total times around the rink (27), which gives 7. Then, divide the number of times she did not slip and fall (7) by the total times around the rink (27) and multiply by 100 to get the percentage. So, 7 divided by 27 equals 0.259, which rounds to approximately 26%. Therefore, the correct answer is 26%. Choice A (37%) is incorrect because it does not reflect the calculation based on the given information. Choice B (74%) is incorrect as it is not the result of the correct calculation. Choice D (15%) is incorrect as it does not match the calculated percentage based on the scenario provided.
2. If (D) is the distance traveled and (R) is the rate of travel, which of the following represents the relationship between D and R for the equation D=2R?
- A. D is twice as much as R
- B. R is twice as much as D
- C. R is two times D
- D. D is two more than R
Correct answer: A
Rationale: The equation D=2R means that D equals 2 times R, which translates to D being twice the value of R. Therefore, choice A, 'D is twice as much as R,' is the correct representation of the relationship between D and R. Choice B, 'R is twice as much as D,' incorrectly reverses the roles of D and R. Choice C, 'R is two times D,' incorrectly states the relationship between R and D. Choice D, 'D is two more than R,' does not accurately reflect the relationship presented in the equation.
3. Simplify the following expression: (1/4) × (3/5) ÷ 1 (1/8)
- A. 8/15
- B. 27/160
- C. 2/15
- D. 27/40
Correct answer: C
Rationale: First, convert the mixed number 1 (1/8) into an improper fraction: 1 (1/8) = 9/8. Now, simplify the expression: (1/4) × (3/5) ÷ (9/8). To divide by a fraction, multiply by its reciprocal: (1/4) × (3/5) × (8/9) = 24/180 = 2/15. Thus, the simplified expression is 2/15. Choice A (8/15) is incorrect because the correct answer is 2/15. Choice B (27/160) is incorrect as it is not the result of the given expression. Choice D (27/40) is incorrect as it does not match the simplified expression obtained.
4. Approximately how many people voted for the proposition if 9.5% of the town's population of 51,623 voted for it in a municipal election?
- A. 3,000
- B. 5,000
- C. 7,000
- D. 10,000
Correct answer: B
Rationale: To find the approximate number of people who voted for the proposition, multiply the town's population by the percentage that voted for it. 9.5% of 51,623 is about 0.095 * 51,623 ≈ 4,904. Rounded to the nearest thousand, this gives an estimate of 5,000 people. Therefore, choice B, '5,000,' is the correct answer. Choices A, C, and D are incorrect as they do not align with the calculated estimation.
5. How many gallons are in 1,000 fluid ounces?
- A. 7.8125 gallons
- B. 15.625 gallons
- C. 31.25 gallons
- D. 62.5 gallons
Correct answer: A
Rationale: To convert fluid ounces to gallons, you need to divide the number of fluid ounces by the number of fluid ounces in a gallon. Since there are 128 fluid ounces in a gallon, to find out how many gallons are in 1,000 fluid ounces, you divide 1,000 by 128. The correct calculation is 1,000 / 128 = 7.8125 gallons. Therefore, the correct answer is A. Choices B, C, and D are incorrect as they do not accurately represent the conversion from fluid ounces to gallons.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access