solve the following equation
Logo

Nursing Elites

ATI TEAS 7

TEAS Test Practice Math

1. Solve the following equation: 3(2y+50)−4y=500

Correct answer: B

Rationale: To solve the equation 3(2y+50)−4y=500, first distribute to get 6y+150−4y=500. Combining like terms results in 2𝑦 + 150 = 500. By subtracting 150 from both sides, we get 2y = 350. Dividing by 2 gives y = 175. Therefore, the correct answer is B. Choices A, C, and D are incorrect because they do not correctly follow the steps of distributing, combining like terms, and isolating the variable to solve for y.

2. In Mrs. McConnell's classroom, there are 5 students with hazel eyes and 2 students with green eyes out of a total of 30 students. What percentage of the students have either hazel or green eyes?

Correct answer: A

Rationale: To calculate the percentage of students with either hazel or green eyes, add the number of students with hazel and green eyes (5 + 2 = 7) and divide by the total number of students (30): 7 ÷ 30 ≈ 0.23 or 23%. The correct answer is A, 0.23, which represents 23% of the total students. Choice B, 0.3, is incorrect as it corresponds to 30%, which is higher than the total number of students. Choice C, 0.47, is incorrect as it represents 47%, which is also higher than the total number of students. Choice D, 0.77, is incorrect as it corresponds to 77%, which is much higher than the total number of students.

3. Express 3 5/7 as an improper fraction.

Correct answer: A

Rationale: To convert a mixed number to an improper fraction, multiply the whole number by the denominator of the fraction, then add the numerator. In this case, 3 * 7 + 5 = 21 + 5 = 26. So, 3 5/7 as an improper fraction is 26/7. Choice B (21/7) is incorrect because it represents the original fraction 3 5/7. Choice C (22/7) is incorrect and represents a different fraction. Choice D (26/5) is incorrect and does not reflect the proper conversion of the mixed number to an improper fraction.

4. In the winter of 2006, 6 inches of snow fell in Chicago, IL. The following winter, 3 inches of snowfall fell in Chicago. What was the percent decrease in snowfall in Chicago between those two winters?

Correct answer: C

Rationale: To calculate the percent decrease in snowfall between the two winters, use the formula: Percent Decrease = ((Initial Value - Final Value) / Initial Value) * 100. In this case, the initial value is 6 inches and the final value is 3 inches. Plug these values into the formula: ((6 - 3) / 6) * 100 = (3 / 6) * 100 = 0.5 * 100 = 50%. Therefore, the correct answer is 50%, which is not listed among the choices provided. Among the given choices, the closest percentage is 41.00%, which corresponds to choice C.

5. Three roommates decided to combine their money to buy a birthday gift for the fourth roommate. The first roommate contributed $12.03, the second roommate gave $11.96, and the third roommate donated $12.06. Estimate the total amount of money the roommates used to purchase the gift

Correct answer: C

Rationale: To find the total amount contributed, you can add the individual contributions: $12.03 + $11.96 + $12.06 = $36. Therefore, the roommates used a total of $36 to purchase the gift. Choice A ($34), B ($35), and D ($37) are incorrect as they do not reflect the accurate total amount contributed by the roommates.

Similar Questions

If m represents a car’s average mileage in miles per gallon, p represents the price of gas in dollars per gallon, and d represents a distance in miles, which of the following algebraic equations represents the cost, c, of gas per mile?
If 35% of a paycheck is deducted for taxes and 4% for insurance, what is the total percent taken out of the paycheck?
A patient was taking 310 mg of an antidepressant daily. The doctor reduced the dosage by 1/5, and then reduced it again by 20 mg. What is the patient’s final dosage?
What defines an integer?
What is the sixth number in the sequence 5, 6, 7, 8, 9?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses