ATI TEAS 7
TEAS Test Practice Math
1. Kyle has $950 in savings and wishes to donate one-fifth of it to 8 local charities. He estimates that he will donate around $30 to each charity. Which of the following correctly describes the reasonableness of his estimate?
- A. It is reasonable because $190 is one-fifth of $950
- B. It is reasonable because $190 is less than one-fifth of $1,000
- C. It is not reasonable because $240 is more than one-fifth of $1,000
- D. It is not reasonable because $240 is one-fifth of $1,000
Correct answer: C
Rationale: Kyle initially had $950 in savings, and one-fifth of that amount would be $190. Since he wishes to donate around $30 to each charity, the total amount he would donate to 8 local charities would be $30 x 8 = $240. This amount is more than one-fifth of $1,000, making the estimate not reasonable. Choice A is incorrect because $190 is the correct one-fifth of $950, not $900. Choice B is incorrect as it compares $190 to a different amount ($1,000) rather than the actual total. Choice D is incorrect as it states that $240 is one-fifth of $1,000, which is inaccurate.
2. Juan wishes to compare the percentages of time he spends on different tasks during the workday. Which of the following representations is the most appropriate choice for displaying the data?
- A. Line plot
- B. Bar graph
- C. Line graph
- D. Pie chart
Correct answer: D
Rationale: A pie chart is the most appropriate choice for displaying the percentages of time spent on different tasks during the workday because it visually represents parts of a whole. In this case, each task's percentage represents a part of the entire workday, making a pie chart an ideal way to compare these percentages. Line plots, bar graphs, and line graphs are not suitable for showing percentages of a whole; they are more commonly used for tracking trends, comparing values, or showing relationships between variables but do not efficiently represent parts of a whole like a pie chart does.
3. Based on their prescribing habits, a set of doctors was divided into three groups: 1/4 of the doctors were placed in Group X because they always prescribed medication. 1/3 of the doctors were placed in Group Y because they never prescribed medication. 1/6 of the doctors were placed in Group Z because they sometimes prescribed medication. Order the groups from largest to smallest, according to the number of doctors in each group.
- A. Group X, Group Y, Group Z
- B. Group Z, Group Y, Group X
- C. Group Z, Group X, Group Y
- D. Group Y, Group X, Group Z
Correct answer: D
Rationale: Compare and order the groups based on the fractions provided.
4. Simplify the expression: 2x + 3x - 5.
- A. 5x - 5
- B. 5x
- C. x - 5
- D. 2x - 5
Correct answer: A
Rationale: To simplify the expression 2ð‘¥ + 3ð‘¥ - 5, follow these steps: Identify and combine like terms. The terms 2ð‘¥ and 3ð‘¥ are both 'like terms' because they both contain the variable ð‘¥. Add the coefficients of the like terms: 2ð‘¥ + 3ð‘¥ = 5ð‘¥. Simplify the expression. After combining the like terms, the expression becomes 5ð‘¥ - 5, which includes the simplified term 5ð‘¥ and the constant -5. Thus, the fully simplified expression is 5ð‘¥ - 5, making Option A the correct answer. This method ensures all terms are correctly simplified by combining similar elements and retaining constants.
5. Dr. Lee observed that 30% of all his patients developed an infection after taking a certain antibiotic. He further noticed that 5% of that 30% required hospitalization to recover from the infection. What percentage of Dr. Lee's patients were hospitalized after taking the antibiotic?
- A. 1.50%
- B. 5%
- C. 15%
- D. 30%
Correct answer: A
Rationale: To find the percentage of Dr. Lee's patients hospitalized after taking the antibiotic, we need to calculate 30% of 5%. First, convert 30% and 5% to decimals: 30% = 0.30 and 5% = 0.05. Multiply 0.30 by 0.05 to get 0.015. To convert 0.015 to a percentage, multiply by 100, resulting in 1.5%. Therefore, only 1.50% of Dr. Lee's patients were hospitalized after taking the antibiotic. Choice A is correct. Choice B (5%) is incorrect as it represents the percentage of patients who developed an infection and not those hospitalized. Choices C (15%) and D (30%) are also incorrect percentages as they do not accurately reflect the proportion of hospitalized patients in this scenario.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access