ATI TEAS 7
TEAS 7 Math Practice Test
1. Which statement best describes the rate of change?
- A. Every day, the snow melts 10 centimeters.
- B. Every day, the snow melts 5 centimeters.
- C. Every day, the snow increases by 10 centimeters.
- D. Every day, the snow increases by 5 centimeters.
Correct answer: B
Rationale: The rate of change refers to how one quantity changes concerning another quantity. In this scenario, the rate of change is the amount of snow melting per day, which is 5 centimeters. This is determined by the slope of the graph, indicating a decrease in snow depth. Choices C and D incorrectly describe an increase in snow depth, while choice A exaggerates the rate of snow melting compared to the actual value of 5 centimeters per day.
2. If a train travels 60 miles per hour for 2 hours, how far does the train travel?
- A. 60 miles
- B. 100 miles
- C. 120 miles
- D. 200 miles
Correct answer: C
Rationale: To find the distance traveled by the train, we use the formula Distance = Speed x Time. Given that the train travels at 60 miles per hour for 2 hours, the calculation would be 60 miles/hour x 2 hours = 120 miles. Therefore, the correct answer is 120 miles. Choice A (60 miles) is incorrect because it only represents the speed of the train, not the total distance traveled. Choice B (100 miles) is incorrect as it does not account for the full 2 hours of travel. Choice D (200 miles) is incorrect as it overestimates the distance by multiplying the speed by the time incorrectly.
3. On a floor plan drawn at a scale of 1:100, the area of a rectangular room is 50 cm². What is the actual area of the room?
- A. 500 m²
- B. 50 m²
- C. 5000 cm²
- D. 500 cm²
Correct answer: D
Rationale: The scale of 1:100 means that 1 cm² on the floor plan represents 100 cm² in real life. To find the actual area of the room, you need to multiply the area on the floor plan by the square of the scale factor. Since the scale is 1:100, the scale factor is 100. Therefore, 50 cm² on the floor plan represents 50 * 100 = 5000 cm² in real life. Choice A (500 m²) is incorrect as it converts the area from cm² to m² without considering the scale factor. Choice B (50 m²) is incorrect as it does not account for the scale factor. Choice C (5000 cm²) is incorrect as it gives the area on the floor plan, not the actual area.
4. How much did he save from the original price?
- A. $170
- B. $212.50
- C. $105.75
- D. $200
Correct answer: B
Rationale: To calculate the amount saved from the original price, you need to subtract the discounted price from the original price. The formula is: Original price - Discounted price = Amount saved. In this case, the original price was $850, and the discounted price was $637.50. Therefore, $850 - $637.50 = $212.50. Hence, he saved $212.50 from the original price. Choice A ($170) is incorrect as it is not the correct amount saved. Choice C ($105.75) is incorrect as it does not match the calculated savings. Choice D ($200) is incorrect as it is not the accurate amount saved based on the given prices.
5. Given the double bar graph shown below, which of the following statements is true?
- A. Group A is negatively skewed, while Group B is approximately normal.
- B. Group A is positively skewed, while Group B is approximately normal.
- C. Group A is approximately normal, while Group B is negatively skewed.
- D. Group A is approximately normal, while Group B is positively skewed.
Correct answer: B
Rationale: The correct answer is B. In a double bar graph, Group A is positively skewed, meaning its data is clustered on the left and has a tail extending to the right. On the other hand, Group B displays a normal distribution where the data is evenly distributed around the mean. Choices A, C, and D are incorrect as they inaccurately describe the skewness and distribution of the data in Group A and Group B.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access