ATI TEAS 7
TEAS Test Practice Math
1. If he pays $270 per month in rent, how much money does he put into his house savings account each month?
- A. $90
- B. $270
- C. $730
- D. $810
Correct answer: A
Rationale: The correct answer is $90. If he pays $270 per month in rent and saves a total of $360 per month, he puts $360 - $270 = $90 into his house savings account each month. Choice B ($270) is incorrect as this amount represents the rent paid, not the amount saved. Choices C ($730) and D ($810) are both significantly higher than the correct amount of $90, making them incorrect as they do not align with the given information in the question.
2. The cost of renting a car is $50 per day plus $0.25 per mile driven. If a customer rents the car for 3 days and drives 120 miles, what is the total cost?
- A. $156
- B. $190
- C. $165
- D. $210
Correct answer: A
Rationale: To calculate the total cost, first, multiply the number of days by the cost per day: 3 days x $50/day = $150. Then, multiply the number of miles driven by the cost per mile: 120 miles x $0.25 = $30. Finally, add the two amounts together: $150 (daily cost) + $30 (mileage cost) = $180. Therefore, the correct total cost is $180, which corresponds to choice A. The other choices are incorrect because they do not reflect the accurate calculation of $150 for the daily cost and $30 for the mileage cost.
3. Half of a circular garden with a radius of 11.5 feet needs weeding. Find the area in square feet that needs weeding. Round to the nearest hundredth. Use 3.14 for π.
- A. 2.4
- B. 207.64
- C. 15.1
- D. 30.1
Correct answer: B
Rationale: The formula for the area of a full circle is calculated as Area = π × (radius²). When finding the area of half a circle, we multiply by 0.5. Thus, the formula becomes Area = 0.5 × π × (radius²). Given that the radius of the circular garden is 11.5 feet, the calculation using π = 3.14 is as follows: Area = 0.5 × 3.14 × (11.5²) = 0.5 × 3.14 × 132.25 = 0.5 × 415.27 = 207.64 square feet. Therefore, the correct answer is B. Choices A, C, and D are incorrect because they do not reflect the correct calculation for finding the area of half a circular garden with a radius of 11.5 feet.
4. Curtis measured the temperature of water in a flask in his science class. The temperature of the water was 35 °C. He carefully heated the flask so that the temperature of the water increased by about 2 °C every 3 minutes. Approximately how much had the temperature of the water increased after 20 minutes?
- A. 10 °C
- B. 13 °C
- C. 15 °C
- D. 35 °C
Correct answer: B
Rationale: To find the increase in temperature after 20 minutes, calculate how many 3-minute intervals are in 20 minutes (20 ÷ 3 = 6.66, rounding to 7 intervals). Then, multiply the temperature increase per interval (2 °C) by the number of intervals (7 intervals), giving a total increase of 14 °C. Therefore, after 20 minutes, the temperature of the water would have increased by approximately 14 °C. Choice A, 10 °C, is incorrect as it underestimates the total increase. Choice C, 15 °C, is incorrect as it overestimates the total increase. Choice D, 35 °C, is incorrect as it represents the initial temperature of the water, not the increase in temperature.
5. Simplify the following expression: 1.034 + 0.275 - 1.294
- A. 0.015
- B. 0.15
- C. 1.5
- D. -0.15
Correct answer: A
Rationale: To simplify the expression, begin by adding 1.034 and 0.275, which equals 1.309. Then, subtract 1.294 from the sum: 1.309 - 1.294 = 0.015. Therefore, the correct answer is 0.015. Choice B (0.15) is incorrect as it does not reflect the accurate calculation. Choice C (1.5) is incorrect as it is not the correct result of the expression simplification. Choice D (-0.15) is incorrect as it represents a different value than the correct outcome of the expression simplification.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access