ATI TEAS 7
Math Practice TEAS Test
1. Solve for x: x + 5 = x - 3.
- A. x = -5
- B. x = 5
- C. x = -3
- D. x = 3
Correct answer: A
Rationale: To solve the equation x + 5 = x - 3, we aim to isolate x. By subtracting x from both sides, we get 5 = -3, which is not possible. This indicates that the equation has no solution. Therefore, the correct answer is x = -5. Choices B, C, and D are incorrect as they do not yield a valid solution when substituted back into the original equation.
2. A charter bus driver drove at an average speed of 65 mph for 305 miles. If he stops at a gas station for 15 minutes, then drives another 162 miles at an average speed of 80 mph, how long will it have been since he began the trip?
- A. 0.96 hours
- B. 6.44 hours
- C. 6.69 hours
- D. 6.97 hours
Correct answer: D
Rationale: To find the total time, we first calculate the time taken for the first leg of the trip by dividing the distance of 305 miles by the speed of 65 mph, which equals 4.69 hours. After that, we add the 15 minutes spent at the gas station, which is 0.25 hours. Next, we calculate the time taken for the second leg of the trip by dividing the distance of 162 miles by the speed of 80 mph, which equals 2.03 hours. Adding these times together (4.69 hours + 0.25 hours + 2.03 hours) gives us a total time of 6.97 hours. Therefore, it will have been 6.97 hours since the driver began the trip. Choice A is incorrect as it does not account for the time spent driving the second leg of the trip. Choice B is incorrect as it only considers the time for the first leg of the trip and the time spent at the gas station. Choice C is incorrect as it misses the time taken for the second leg of the trip.
3. Which of the following is listed in order from least to greatest? (-2, -3/4, -0.45, 3%, 0.36)
- A. -2, -3/4, -0.45, 3%, 0.36
- B. -3/4, -0.45, -2, 0.36, 3%
- C. -0.45, -2, -3/4, 3%, 0.36
- D. -2, -3/4, -0.45, 0.36, 3%
Correct answer: A
Rationale: To determine the order from least to greatest, convert all the values to a common form. When written in decimal form, the order is -2, -0.75 (which is equal to -3/4), -0.45, 0.03 (which is equal to 3%), and 0.36. Therefore, the correct order is -2, -3/4, -0.45, 3%, 0.36 (Choice A). Choice B is incorrect as it has the incorrect placement of -2 and 0.36. Choice C is incorrect as it incorrectly places -0.45 before -2. Choice D is incorrect as it incorrectly places 0.36 before 3%.
4. Kimberley earns $10 an hour babysitting, and after 10 p.m., she earns $12 an hour, with the amount paid being rounded to the nearest hour accordingly. On her last job, she worked from 5:30 p.m. to 11 p.m. In total, how much did Kimberley earn on her last job?
- A. $45
- B. $57
- C. $62
- D. $42
Correct answer: C
Rationale: Kimberley worked from 5:30 p.m. to 11 p.m., which is a total of 5.5 hours before 10 p.m. (from 5:30 p.m. to 10 p.m.) and 1 hour after 10 p.m. The earnings she made before 10 p.m. at $10 an hour was 5.5 hours * $10 = $55. Her earnings after 10 p.m. for the rounded hour were 1 hour * $12 = $12. Therefore, her total earnings for the last job were $55 + $12 = $67. Since the amount is rounded to the nearest hour, the closest rounded amount is $62. Therefore, Kimberley earned $62 on her last job. Choice A is incorrect as it does not consider the additional earnings after 10 p.m. Choices B and D are incorrect as they do not factor in the hourly rates and the total hours worked accurately.
5. How much did he save from the original price?
- A. $170
- B. $212.50
- C. $105.75
- D. $200
Correct answer: B
Rationale: To calculate the amount saved from the original price, you need to subtract the discounted price from the original price. The formula is: Original price - Discounted price = Amount saved. In this case, the original price was $850, and the discounted price was $637.50. Therefore, $850 - $637.50 = $212.50. Hence, he saved $212.50 from the original price. Choice A ($170) is incorrect as it is not the correct amount saved. Choice C ($105.75) is incorrect as it does not match the calculated savings. Choice D ($200) is incorrect as it is not the accurate amount saved based on the given prices.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access