ATI TEAS 7
TEAS Practice Math Test
1. The cost of renting a car is $50 per day plus $0.25 per mile driven. If a customer rents the car for 3 days and drives 120 miles, what is the total cost?
- A. $156
- B. $190
- C. $165
- D. $210
Correct answer: A
Rationale: To calculate the total cost, first, multiply the number of days by the cost per day: 3 days x $50/day = $150. Then, multiply the number of miles driven by the cost per mile: 120 miles x $0.25 = $30. Finally, add the two amounts together: $150 (daily cost) + $30 (mileage cost) = $180. Therefore, the correct total cost is $180, which corresponds to choice A. The other choices are incorrect because they do not reflect the accurate calculation of $150 for the daily cost and $30 for the mileage cost.
2. The second midwife allocates 1/2 of her funds to pay an office administrator, plus another 1/10 for office supplies. What is the total fraction of the second midwife's budget that is spent on the office administrator and office supplies?
- A. 3/5
- B. 2/12
- C. 2/20
- D. 1/20
Correct answer: A
Rationale: To find the total fraction of the second midwife's budget spent on the office administrator and office supplies, add the fractions. The midwife allocates 1/2 of her funds to the office administrator (1/2) and another 1/10 for office supplies. Adding 1/2 and 1/10 gives a total of 3/5. Choice A (3/5) is correct. Choice B (2/12) is incorrect as it simplifies to 1/6, which is not the total fraction. Choice C (2/20) is incorrect as it simplifies to 1/10, which is only the fraction spent on office supplies, not the total. Choice D (1/20) is incorrect as it represents only the fraction spent on office supplies, not the total spent on both the administrator and supplies.
3. Simplify the expression. What is the value of x? (5/4)x = 20
- A. 8
- B. 16
- C. 24
- D. 32
Correct answer: D
Rationale: To solve for x, multiply both sides by the reciprocal of 5/4 to isolate x. (4/5)(5/4)x = (4/5)20; x = 16. Therefore, the correct answer is 32. Choice A (8), Choice B (16), and Choice C (24) are incorrect as they do not represent the correct value of x obtained after correctly simplifying the expression.
4. A certain exam has 30 questions. A student gets 1 point for each question answered correctly and loses half a point for each question answered incorrectly; no points are gained or lost for questions left blank. If x represents the number of questions a student answers correctly and y represents the number of questions left blank, which of the following expressions represents the student's score on the exam?
- A. x - y/2
- B. x - y
- C. 30 - (x + y)
- D. 30 - x - y/2
Correct answer: A
Rationale: The student's score is calculated by adding the points earned for correct answers (x) and subtracting the points lost for incorrect answers (y/2). Therefore, the expression for the student's score on the exam is x - y/2. Option A is correct because it accurately represents this calculation. Option B (x - y) is incorrect as it does not account for the penalty of losing half a point for each incorrect answer. Option C (30 - (x + y)) is incorrect as it subtracts the total number of questions from the sum of correct and blank answers, which does not represent the scoring system. Option D (30 - x - y/2) is also incorrect as it incorrectly subtracts x from 30 and then deducts y divided by 2, which is not the correct scoring method for the exam.
5. Curtis measured the temperature of water in a flask in his science class. The temperature of the water was 35 °C. He carefully heated the flask so that the temperature of the water increased by about 2 °C every 3 minutes. Approximately how much had the temperature of the water increased after 20 minutes?
- A. 10 °C
- B. 13 °C
- C. 15 °C
- D. 35 °C
Correct answer: B
Rationale: To find the increase in temperature after 20 minutes, calculate how many 3-minute intervals are in 20 minutes (20 ÷ 3 = 6.66, rounding to 7 intervals). Then, multiply the temperature increase per interval (2 °C) by the number of intervals (7 intervals), giving a total increase of 14 °C. Therefore, after 20 minutes, the temperature of the water would have increased by approximately 14 °C. Choice A, 10 °C, is incorrect as it underestimates the total increase. Choice C, 15 °C, is incorrect as it overestimates the total increase. Choice D, 35 °C, is incorrect as it represents the initial temperature of the water, not the increase in temperature.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access