the cost of renting a car is 50 per day plus 025 per mile driven if a customer rents the car for 3 days and drives 120 miles what is the total cost
Logo

Nursing Elites

ATI TEAS 7

TEAS Practice Math Test

1. The cost of renting a car is $50 per day plus $0.25 per mile driven. If a customer rents the car for 3 days and drives 120 miles, what is the total cost?

Correct answer: A

Rationale: To calculate the total cost, first, multiply the number of days by the cost per day: 3 days x $50/day = $150. Then, multiply the number of miles driven by the cost per mile: 120 miles x $0.25 = $30. Finally, add the two amounts together: $150 (daily cost) + $30 (mileage cost) = $180. Therefore, the correct total cost is $180, which corresponds to choice A. The other choices are incorrect because they do not reflect the accurate calculation of $150 for the daily cost and $30 for the mileage cost.

2. On a highway map, the scale indicates that 1 inch represents 45 miles. If the distance on the map is 3.2 inches, how far is the actual distance?

Correct answer: D

Rationale: To find the actual distance represented by 3.2 inches on the map, we use the scale of 1 inch representing 45 miles. Setting up the proportion 1 inch = 45 miles, we can calculate the actual distance by multiplying 3.2 inches by 45 miles, which equals 144 miles. Therefore, the correct answer is 144 miles. Choice A (45 miles) is incorrect as it represents the distance for 1 inch on the map, not for 3.2 inches. Choices B (54 miles) and C (112 miles) are incorrect calculations based on a misinterpretation of the scale.

3. A commuter survey counts the people riding in cars on a highway in the morning. Each car contains only one man, only one woman, or both one man and one woman. Out of 25 cars, 13 contain a woman and 20 contain a man. How many contain both a man and a woman?

Correct answer: C

Rationale: Let's denote the number of cars containing only a man as M, only a woman as W, and both a man and a woman as B. Given that there are 25 cars in total, we have: M + W + B = 25 From the information provided, we know that 13 cars contain a woman (W) and 20 cars contain a man (M). Since each car contains either one man, one woman, or both, the cars that contain both a man and a woman (B) are counted once in each of the M and W categories. Therefore, to find out how many cars contain both a man and a woman, we need to subtract the number of cars that contain only a man and only a woman from the total cars. M + B = 20 (as 20 cars contain a man) W + B = 13 (as 13 cars contain a woman) Solving the above two equations simultaneously, we get: M = 12, W = 5, B = 8 Therefore, 8 cars contain both a man and a woman. Hence, the correct answer is 8. Choice A, B, and D are incorrect as they do not reflect the correct calculation based on the information provided.

4. What is the approximate metric equivalent of 7 inches?

Correct answer: D

Rationale: The correct answer is D: 17.8 cm. To convert inches to centimeters, you can use the conversion factor 1 inch = 2.54 cm. Therefore, 7 inches is equal to 7 * 2.54 = 17.78 cm, which rounds to 17.8 cm. Choices A, B, and C are incorrect because they do not correspond to the correct conversion of 7 inches to centimeters.

5. Solve for x: 2x - 7 = 3

Correct answer: D

Rationale: To solve the equation for x, follow these steps: 2x - 7 = 3. Add 7 to both sides to isolate 2x, resulting in 2x = 10. Then, divide by 2 on both sides to find x, which gives x = 5. Therefore, the correct answer is x = 5. Choices A, B, and C are incorrect because they do not accurately solve the equation.

Similar Questions

Simplify the expression below. Which of the following is correct? 3.45 * 0.53
A circle has an area of 121π in². Which of the following is the circumference of the circle in terms of pi (π)?
What is the result of adding 7/8 and 5/8 and expressing the sum in reduced form?
How many kiloliters are in 147 liters?
Simplify the following expression: 13 - 3/22 - 11

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses