ATI TEAS 7
TEAS Math Practice Test
1. Divide 52 by 27 and 51 by 27 and simplify.
- A. 52/27
- B. 51/27
- C. 52/29
- D. 51/29
Correct answer: A
Rationale: To divide 52 by 27 and 51 by 27, you get 52/27 and 51/27, respectively. When simplified, 52/27 is the correct answer. The other choices, 51/27, 52/29, and 51/29, are incorrect because they do not reflect the correct result of dividing the given numbers.
2. Which of the following is equivalent to 3.28?
- A. (328/100)
- B. (41/5)
- C. (3/28)
- D. (7/25)
Correct answer: D
Rationale: To convert a decimal to a fraction, we can treat it as a fraction over 1 and then simplify. For 3.28, it can be written as 3.28/1. To convert this to a fraction, we multiply by 100 to get (328/100). Then, to simplify, we divide both the numerator and denominator by 4 to get (82/25). This simplifies further to (7/25). Therefore, (7/25) is equivalent to 3.28. Choices A, B, and C are incorrect as they do not represent the decimal 3.28.
3. Kimberley earns $10 an hour babysitting, and after 10 p.m., she earns $12 an hour, with the amount paid being rounded to the nearest hour accordingly. On her last job, she worked from 5:30 p.m. to 11 p.m. In total, how much did Kimberley earn on her last job?
- A. $45
- B. $57
- C. $62
- D. $42
Correct answer: C
Rationale: Kimberley worked from 5:30 p.m. to 11 p.m., which is a total of 5.5 hours before 10 p.m. (from 5:30 p.m. to 10 p.m.) and 1 hour after 10 p.m. The earnings she made before 10 p.m. at $10 an hour was 5.5 hours * $10 = $55. Her earnings after 10 p.m. for the rounded hour were 1 hour * $12 = $12. Therefore, her total earnings for the last job were $55 + $12 = $67. Since the amount is rounded to the nearest hour, the closest rounded amount is $62. Therefore, Kimberley earned $62 on her last job. Choice A is incorrect as it does not consider the additional earnings after 10 p.m. Choices B and D are incorrect as they do not factor in the hourly rates and the total hours worked accurately.
4. Joshua has to earn more than 92 points on a state test to qualify for a scholarship. Each question is worth 4 points, and the test has 30 questions. Which inequality can be solved to determine the number of questions Joshua must answer correctly?
- A. 4x < 30
- B. 4x < 92
- C. 4x > 30
- D. 4x > 92
Correct answer: D
Rationale: Joshua must answer more than 92 points' worth of questions. Since each question is worth 4 points, the inequality is 4x > 92. Choice A (4x < 30) is incorrect as it represents that Joshua must answer less than 30 questions correctly, not earning more than 92 points. Choice B (4x < 92) is incorrect as it signifies that Joshua must earn less than 92 points, which contradicts the requirement. Choice C (4x > 30) is incorrect as it implies that Joshua must answer more than 30 questions correctly, but the threshold is 92 points, not 30 points.
5. A sandwich shop earns $4 for every sandwich (s) it sells, $2 for every drink (d), and $1 for every cookie (c). If this is all the shop sells, which of the following equations represents what the shop’s revenue (r) is over three days?
- A. r = 4s + 2d + 1c
- B. r = 8s + 4d + 2c
- C. r = 12s + 6d + 3c
- D. r = 16s + 8d + 4c
Correct answer: A
Rationale: Let s be the number of sandwiches sold. Each sandwich earns $4, so selling s sandwiches at $4 each results in revenue of $4s. Similarly, d drinks at $2 each give $2d of income, and cookies bring in $1c. Summing these values gives total revenue = 4s + 2d + 1c. Therefore, option A, r = 4s + 2d + 1c, correctly represents the shop's revenue. Choices B, C, and D are incorrect because they incorrectly multiply the prices of each item by more than one day's sales, which would overstate the total revenue for a three-day period.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access