elijah drove 45 miles to his job in an hour and ten minutes in the morning on the way home in the evening however trafic was much heavier and the same
Logo

Nursing Elites

ATI TEAS 7

TEAS Test Practice Math

1. Elijah drove 45 miles to his job in an hour and ten minutes in the morning. On the way home in the evening, however, the traffic was much heavier, and the same trip took an hour and a half. What was his average speed in miles per hour for the round trip?

Correct answer: A

Rationale: To find the average speed for the round trip, we calculate the total distance and total time traveled. The total distance for the round trip is 45 miles each way, so 45 miles * 2 = 90 miles. The total time taken for the morning trip is 1 hour and 10 minutes (1.17 hours), and for the evening trip is 1.5 hours. Therefore, the total time for the round trip is 1.17 hours + 1.5 hours = 2.67 hours. To find the average speed, we divide the total distance by the total time: 90 miles / 2.67 hours ≈ 33.7 miles per hour. The closest option is A, 30 miles per hour, making it the correct answer. Choice B (45) is the total distance for the round trip, not the average speed. Choices C (36) and D (40) are not derived from the correct calculations and do not represent the average speed for the round trip.

2. Which statement best describes the rate of change?

Correct answer: B

Rationale: The rate of change refers to how one quantity changes concerning another quantity. In this scenario, the rate of change is the amount of snow melting per day, which is 5 centimeters. This is determined by the slope of the graph, indicating a decrease in snow depth. Choices C and D incorrectly describe an increase in snow depth, while choice A exaggerates the rate of snow melting compared to the actual value of 5 centimeters per day.

3. Calculate the sum of the numbers from 1 to 6:

Correct answer: B

Rationale: To find the sum of numbers from 1 to 6, we add them together: 1 + 2 + 3 + 4 + 5 + 6 = 21. Therefore, the correct answer is 21. Choice A (30) is incorrect because it is not the sum of the numbers 1 to 6. Choice C (15) is incorrect as it is the sum of numbers 1 to 5. Choice D (13) is incorrect as it is the sum of numbers 1 to 4, not 1 to 6.

4. A commuter survey counts the people riding in cars on a highway in the morning. Each car contains only one man, only one woman, or both one man and one woman. Out of 25 cars, 13 contain a woman and 20 contain a man. How many contain both a man and a woman?

Correct answer: C

Rationale: Let's denote the number of cars containing only a man as M, only a woman as W, and both a man and a woman as B. Given that there are 25 cars in total, we have: M + W + B = 25 From the information provided, we know that 13 cars contain a woman (W) and 20 cars contain a man (M). Since each car contains either one man, one woman, or both, the cars that contain both a man and a woman (B) are counted once in each of the M and W categories. Therefore, to find out how many cars contain both a man and a woman, we need to subtract the number of cars that contain only a man and only a woman from the total cars. M + B = 20 (as 20 cars contain a man) W + B = 13 (as 13 cars contain a woman) Solving the above two equations simultaneously, we get: M = 12, W = 5, B = 8 Therefore, 8 cars contain both a man and a woman. Hence, the correct answer is 8. Choice A, B, and D are incorrect as they do not reflect the correct calculation based on the information provided.

5. While at the local ice skating rink, Cora went around the rink 27 times in total. She slipped and fell 20 of the 27 times she skated around the rink. What approximate percentage of the times around the rink did Cora not slip and fall?

Correct answer: C

Rationale: To find the approximate percentage of the times Cora did not slip and fall, subtract the times she fell (20) from the total times around the rink (27), which gives 7. Then, divide the number of times she did not slip and fall (7) by the total times around the rink (27) and multiply by 100 to get the percentage. So, 7 divided by 27 equals 0.259, which rounds to approximately 26%. Therefore, the correct answer is 26%. Choice A (37%) is incorrect because it does not reflect the calculation based on the given information. Choice B (74%) is incorrect as it is not the result of the correct calculation. Choice D (15%) is incorrect as it does not match the calculated percentage based on the scenario provided.

Similar Questions

Which of the following statements demonstrates a negative correlation between two variables?
How do you find the radius of a circle when given the diameter? How do you find the radius of a circle when given the circumference?
When rounding 245.2678 to the nearest thousandth, which place value would be used to decide whether to round up or round down?
What is an equivalent fraction?
Order the groups from largest to smallest, according to the number of doctors in each group.

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses