elijah drove 45 miles to his job in an hour and ten minutes in the morning on the way home in the evening however trafic was much heavier and the same
Logo

Nursing Elites

ATI TEAS 7

TEAS Test Practice Math

1. Elijah drove 45 miles to his job in an hour and ten minutes in the morning. On the way home in the evening, however, the traffic was much heavier, and the same trip took an hour and a half. What was his average speed in miles per hour for the round trip?

Correct answer: A

Rationale: To find the average speed for the round trip, we calculate the total distance and total time traveled. The total distance for the round trip is 45 miles each way, so 45 miles * 2 = 90 miles. The total time taken for the morning trip is 1 hour and 10 minutes (1.17 hours), and for the evening trip is 1.5 hours. Therefore, the total time for the round trip is 1.17 hours + 1.5 hours = 2.67 hours. To find the average speed, we divide the total distance by the total time: 90 miles / 2.67 hours ≈ 33.7 miles per hour. The closest option is A, 30 miles per hour, making it the correct answer. Choice B (45) is the total distance for the round trip, not the average speed. Choices C (36) and D (40) are not derived from the correct calculations and do not represent the average speed for the round trip.

2. Divide 4/3 by 9/13 and reduce the fraction.

Correct answer: A

Rationale: To divide fractions, you multiply the first fraction by the reciprocal of the second fraction. So, (4/3) ÷ (9/13) = (4/3) * (13/9) = 52/27. This fraction is already in its reduced form, making choice A the correct answer. Choices B, C, and D are incorrect as they do not represent the correct result of dividing the fractions 4/3 by 9/13.

3. The total perimeter of a rectangle is 36 cm. If the length of each side is 12 cm, what is the width?

Correct answer: C

Rationale: The formula for the perimeter of a rectangle is P = 2(l + w), where P is the perimeter, l is the length, and w is the width. Given that the total perimeter is 36 cm and each side's length is 12 cm, we substitute the values into the formula: 36 = 2(12 + w). Solving for w gives us w = 6. Therefore, the width of the rectangle is 6 cm. Choice A (3 cm) is incorrect because the width is not half of the length. Choice B (12 cm) is the length, not the width. Choice D (8 cm) is incorrect as it does not match the calculated width of 6 cm.

4. What is 15% of 200?

Correct answer: A

Rationale: To find 15% of 200, you multiply 0.15 by 200, which equals 30. Therefore, the correct answer is A. Choice B (20) is incorrect because it represents 10% of 200. Choice C (25) is incorrect as it does not accurately represent 15% of 200. Choice D (40) is incorrect as it represents 20% of 200.

5. If the width of a rectangle is 4 inches (in) and the area of the rectangle is 32 in², what is the length of the rectangle?

Correct answer: A

Rationale: To find the length of the rectangle, we use the formula: Length = Area / Width. Substituting the values given, Length = 32 in² / 4 in = 8 in. Therefore, the correct answer is A. Choice B (28 in), Choice C (36 in), and Choice D (128 in) are incorrect because they do not correctly calculate the length based on the given width and area of the rectangle.

Similar Questions

Which of the following is NOT a way to write 40 percent of N?
Solve for x: 4(2x - 6) = 10x - 6
Solve for y: 2y + 5 = 25 * 10
How will the number 847.89632 be written if rounded to the nearest hundredth?
A cell has a diameter of 0.1 meter, and another cell has a diameter of 0.05 meters. How many times larger is the first cell compared to the second cell?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$1/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses