ATI TEAS 7
TEAS Test Practice Math
1. Elijah drove 45 miles to his job in an hour and ten minutes in the morning. On the way home in the evening, however, the traffic was much heavier, and the same trip took an hour and a half. What was his average speed in miles per hour for the round trip?
- A. 30
- B. 45
- C. 36
- D. 40
Correct answer: A
Rationale: To find the average speed for the round trip, we calculate the total distance and total time traveled. The total distance for the round trip is 45 miles each way, so 45 miles * 2 = 90 miles. The total time taken for the morning trip is 1 hour and 10 minutes (1.17 hours), and for the evening trip is 1.5 hours. Therefore, the total time for the round trip is 1.17 hours + 1.5 hours = 2.67 hours. To find the average speed, we divide the total distance by the total time: 90 miles / 2.67 hours ≈ 33.7 miles per hour. The closest option is A, 30 miles per hour, making it the correct answer. Choice B (45) is the total distance for the round trip, not the average speed. Choices C (36) and D (40) are not derived from the correct calculations and do not represent the average speed for the round trip.
2. A farmer plans to install fencing around a certain field. If each side of the hexagonal field is 320 feet long, and fencing costs $75 per foot, how much will the farmer need to spend on fencing material to enclose the perimeter of the field?
- A. $2,240
- B. $2,800
- C. $3,360
- D. $4,480
Correct answer: C
Rationale: The field is a hexagon with six equal sides, each 320 feet long. To find the total cost of fencing material needed, multiply the cost per foot ($75) by the total perimeter of the field (6 sides x 320 feet). Therefore, the total cost will be $75 x 6 x 320 = $3,360. Thus, the farmer will need to spend $3,360 on fencing material. Choice A, $2,240, is incorrect as it does not account for the total perimeter of the field. Choice B, $2,800, is incorrect as it underestimates the total cost by not considering all sides of the hexagon. Choice D, $4,480, is incorrect as it overestimates the total cost by multiplying incorrectly or considering extra sides.
3. The cost, in dollars, of shipping x computers to California for sale is 3000 + 100x. The amount received when selling these computers is 400x dollars. What is the least number of computers that must be shipped and sold so that the amount received is at least equal to the shipping cost?
- A. 10
- B. 15
- C. 20
- D. 25
Correct answer: B
Rationale: To find the least number of computers that must be shipped and sold so that the amount received is at least equal to the shipping cost, we set up the inequality 400x >= 3000 + 100x. Simplifying this inequality gives 300x >= 3000, and dividing by 300 results in x >= 10. Therefore, at least 15 computers must be shipped and sold to cover the shipping cost, making choice B the correct answer. Choices A, C, and D are incorrect as they represent numbers less than 15, which would not cover the shipping cost.
4. Jeremy put a heavy chalk mark on the tire of his bicycle. His bike tire is 27 inches in diameter. When he rolled the bike, the chalk left marks on the sidewalk. Which expression can be used to best determine the distance, in inches, the bike rolled from the first mark to the fourth mark?
- A. 3(27π)
- B. 4π(27)
- C. (27 ÷ 3)π
- D. (27 ÷ 4)π
Correct answer: A
Rationale: The distance traveled by the bike in one complete roll of the tire is equal to the circumference, which can be calculated using the formula C = πd, where d is the diameter. Given that the diameter of the bike tire is 27 inches, the circumference is obtained by multiplying the diameter by π. As the tire rolls from the first mark to the fourth mark, it completes three full rotations (one complete roll plus two more). Therefore, the total distance rolled is 3 times the circumference, which results in 3(27π). Choice A is correct. Choice B is incorrect as it incorrectly multiplies the diameter by 4π instead of multiplying the circumference by 4. Choices C and D are incorrect as they involve dividing the diameter by a number, which is not applicable in this context.
5. Robert plans to drive 1,800 miles. His car gets 30 miles per gallon, and his tank holds 12 gallons. How many tanks of gas will he need for the trip?
- A. 4 tanks
- B. 5 tanks
- C. 6 tanks
- D. 7 tanks
Correct answer: B
Rationale: To calculate how many gallons of gas Robert needs for the 1,800-mile trip, divide the total distance by the car's mileage per gallon: 1,800 miles ÷ 30 mpg = 60 gallons. Since his tank holds 12 gallons, Robert will need 60 gallons ÷ 12 gallons per tank = 5 tanks of gas for the trip. Choice A (4 tanks), Choice C (6 tanks), and Choice D (7 tanks) are incorrect as they do not correctly calculate the number of tanks needed based on the car's mileage and tank capacity.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access