ATI TEAS 7
TEAS Test Practice Math
1. Elijah drove 45 miles to his job in an hour and ten minutes in the morning. On the way home in the evening, however, the traffic was much heavier, and the same trip took an hour and a half. What was his average speed in miles per hour for the round trip?
- A. 30
- B. 45
- C. 36
- D. 40
Correct answer: A
Rationale: To find the average speed for the round trip, we calculate the total distance and total time traveled. The total distance for the round trip is 45 miles each way, so 45 miles * 2 = 90 miles. The total time taken for the morning trip is 1 hour and 10 minutes (1.17 hours), and for the evening trip is 1.5 hours. Therefore, the total time for the round trip is 1.17 hours + 1.5 hours = 2.67 hours. To find the average speed, we divide the total distance by the total time: 90 miles / 2.67 hours ≈ 33.7 miles per hour. The closest option is A, 30 miles per hour, making it the correct answer. Choice B (45) is the total distance for the round trip, not the average speed. Choices C (36) and D (40) are not derived from the correct calculations and do not represent the average speed for the round trip.
2. John’s Gym charges its members according to the equation y = 40x, where x is the number of months and y represents the total cost to each customer after x months. Ralph’s Recreation Room charges its members according to the equation y = 45x. What relationship can be determined about the monthly cost to the members of each company?
- A. John’s monthly membership fee is equal to Ralph’s monthly membership fee.
- B. John’s monthly membership fee is more than Ralph’s monthly membership fee.
- C. John’s monthly membership fee is less than Ralph’s monthly membership fee.
- D. No relationship can be determined between the monthly membership fees.
Correct answer: C
Rationale: The equation y = 40x represents John's Gym charging $40 per month, while the equation y = 45x represents Ralph's Recreation Room charging $45 per month. Since $40 is less than $45, it can be concluded that John's Gym offers a lower monthly membership fee compared to Ralph's Recreation Room. Therefore, the correct answer is that John’s monthly membership fee is less than Ralph’s monthly membership fee. Choices A and B are incorrect because John's fee is not equal to or greater than Ralph's fee. Choice D is incorrect as there is a clear relationship indicating that John’s monthly membership fee is less than Ralph’s monthly membership fee.
3. Complete the following equation: 2 + (2)(2) - 2 ÷ 2 = ?
- A. 5
- B. 3
- C. 2
- D. 1
Correct answer: A
Rationale: To solve the equation, follow the order of operations (PEMDAS/BODMAS): Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right). 1. Calculate inside the parentheses first: (2)(2) = 4. 2. Then, perform multiplication and division: 2 + 4 - 1 = 6 - 1 = 5. Therefore, the correct answer is 5. Choice B (3) is incorrect because multiplication is done before subtraction. Choices C (2) and D (1) are incorrect as they do not follow the correct order of operations to solve the equation.
4. Joshua needs more than 92 points to qualify for a scholarship. Each question is worth 4 points, and there are 30 questions. What inequality determines how many questions he must answer correctly?
- A. 4x < 92
- B. 4x > 92
- C. 4x < 120
- D. 4x > 120
Correct answer: B
Rationale: To determine the number of questions Joshua must answer correctly, we divide the total points required (92) by the points per question (4) to get 23. Since he needs more than 92 points, he must answer more than 23 questions correctly, which is represented by the inequality 4x > 92. Choices A, C, and D are incorrect because they do not accurately reflect the requirement for Joshua to answer more than 92 points' worth of questions.
5. Solve |x| = 10.
- A. -10, 10
- B. -11, 11
- C. -12, 12
- D. -13, 13
Correct answer: A
Rationale: The absolute value of x is equal to 10 when x is either -10 or 10. Therefore, the correct answer is A. Choices B, C, and D are incorrect because they do not satisfy the equation |x| = 10. For choice B, -11 and 11 do not satisfy the condition. Choices C and D also do not provide solutions that meet the equation's requirement.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access