ATI TEAS 7
TEAS Test Practice Math
1. Elijah drove 45 miles to his job in an hour and ten minutes in the morning. On the way home in the evening, however, the traffic was much heavier, and the same trip took an hour and a half. What was his average speed in miles per hour for the round trip?
- A. 30
- B. 45
- C. 36
- D. 40
Correct answer: A
Rationale: To find the average speed for the round trip, we calculate the total distance and total time traveled. The total distance for the round trip is 45 miles each way, so 45 miles * 2 = 90 miles. The total time taken for the morning trip is 1 hour and 10 minutes (1.17 hours), and for the evening trip is 1.5 hours. Therefore, the total time for the round trip is 1.17 hours + 1.5 hours = 2.67 hours. To find the average speed, we divide the total distance by the total time: 90 miles / 2.67 hours ≈ 33.7 miles per hour. The closest option is A, 30 miles per hour, making it the correct answer. Choice B (45) is the total distance for the round trip, not the average speed. Choices C (36) and D (40) are not derived from the correct calculations and do not represent the average speed for the round trip.
2. During week 1, Cameron worked 5 shifts. During week 2, she worked twice as many shifts. During week 3, she added 4 more shifts. How many shifts did Cameron work in week 3?
- A. 15 shifts
- B. 14 shifts
- C. 16 shifts
- D. 17 shifts
Correct answer: B
Rationale: To find out how many shifts Cameron worked in week 3, we first determine the shifts worked in weeks 1 and 2. In week 1, Cameron worked 5 shifts. In week 2, she worked twice as many shifts, which is 5 x 2 = 10 shifts. Adding the 4 more shifts in week 3, the total shifts worked in week 3 would be 5 (week 1) + 10 (week 2) + 4 (week 3) = 19 shifts. Therefore, the correct answer is 14 shifts (Option B), not 15 shifts (Option A), 16 shifts (Option C), or 17 shifts (Option D).
3. Simplify the expression. Which of the following is correct? (52(3) + 3(-2)^2 / 4 + 3^2 - 2(5 - 8))
- A. 9/8
- B. 87/19
- C. 9
- D. 21/2
Correct answer: B
Rationale: To simplify the expression, apply the order of operations (PEMDAS). Begin by squaring -2 to get 4. Then perform the multiplication and subtraction within parentheses: 52(3) + 3(4)/4 + 9 - 2(5 - 8) = 156 + 12/4 + 9 - 2(3) = 156 + 3 + 9 - 6 = 168 + 3 - 6 = 171 - 6 = 165. Therefore, the correct simplified expression is 165, which is equivalent to 87/19. Choices A, C, and D are incorrect because they do not represent the accurate simplification of the given expression.
4. How can you visually differentiate between a histogram and a bar graph?
- A. A bar graph has gaps between the bars; a histogram does not
- B. A bar graph displays frequency; a histogram does not
- C. A histogram illustrates comparison; a bar graph does not
- D. A bar graph includes labels; a histogram does not
Correct answer: A
Rationale: The key difference between a histogram and a bar graph is that a bar graph has gaps between the bars, while a histogram does not. This feature helps in visually distinguishing between the two. Choice B is incorrect because both types of graphs can show frequency. Choice C is incorrect as both graphs can be used for comparison. Choice D is incorrect as both types of graphs can have labels for better understanding.
5. A person drives 300 miles at 60 mph, then another 200 miles at 80 mph, with a 30-minute break. How long does the trip take?
- A. 5.5 hours
- B. 7 hours
- C. 6 hours
- D. 4.5 hours
Correct answer: C
Rationale: To find the total time, we calculate the time taken for each segment: 300 miles at 60 mph = 300 miles ÷ 60 mph = 5 hours; 200 miles at 80 mph = 200 miles ÷ 80 mph = 2.5 hours. Adding these gives 5 hours + 2.5 hours = 7.5 hours. Converting the 30-minute break to hours (30 minutes ÷ 60 = 0.5 hours), the total time taken is 7.5 hours + 0.5 hours = 8 hours. Therefore, the correct answer is not among the given choices. The rationale provided in the original question is incorrect as it does not account for the break time and has a calculation error in adding the individual times.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access