ATI TEAS 7
Math Practice TEAS Test
1. How can you distinguish between these three types of graphs - scatterplots: Quadratic, Exponential, Linear?
- A. Linear: straight line; Quadratic: U-shape; Exponential: rises or falls quickly in one direction
- B. Linear: curved line; Quadratic: straight line; Exponential: horizontal line
- C. Linear: zigzag line; Quadratic: U-shape; Exponential: flat line
- D. Linear: straight line; Quadratic: W-shape; Exponential: vertical line
Correct answer: A
Rationale: To differentiate between the three types of graphs - scatterplots, a linear graph will display a straight line, a quadratic graph will have a U-shape, and an exponential graph will show a rapid rise or fall in one direction. Choice B is incorrect because linear graphs are represented by straight lines, not curved lines. Choice C is incorrect as linear graphs do not exhibit zigzag patterns, and exponential graphs do not typically result in flat lines. Choice D is incorrect because quadratic graphs form a U-shape, not a W-shape, and exponential graphs do not represent vertical lines.
2. The owner of a newspaper has noticed that print subscriptions have gone down 40% while online subscriptions have gone up 60%. Print subscriptions once accounted for 70% of the newspaper’s business, and online subscriptions accounted for 25%. What is the overall percentage growth or decline in business?
- A. 13% decline
- B. 15% decline
- C. 28% growth
- D. 8% growth
Correct answer: A
Rationale: To calculate the decline in business, start with the 40% decline in the 70% share of print subscriptions: 40% of 70% = 0.40 × 0.70 = 0.28 = 28% decline. Next, calculate the growth from the 60% increase in the 25% share of online subscriptions: 60% of 25% = 0.60 × 0.25 = 0.15 = 15% growth. To find the overall change, sum the decline and growth percentages: 28% decline + 15% growth = -0.28 + 0.15 = -0.13 = 13% decline. Therefore, the overall percentage change in the newspaper's business is a 13% decline. Option A is the correct answer. Option B is incorrect because it doesn't consider the correct calculations for both the decline and growth. Option C is incorrect as it misinterprets the net change in business. Option D is incorrect as it miscalculates the overall percentage growth or decline.
3. Half of a circular garden with a radius of 11.5 feet needs weeding. Find the area in square feet that needs weeding. Round to the nearest hundredth. Use 3.14 for π.
- A. 207.64
- B. 415.27
- C. 519.08
- D. 726.73
Correct answer: B
Rationale: The area of a circle is given by the formula A = π × r², where r is the radius. Since only half of the garden needs weeding, we calculate half the area. Using the given value of π (3.14) and a radius of 11.5 feet: A = 0.5 × 3.14 × (11.5)² A = 0.5 × 3.14 × 132.25 A = 0.5 × 415.27 A = 207.64 square feet. Thus, the area that needs weeding is approximately 207.64 square feet, making option B the correct answer. Choice A (207.64) is incorrect as it represents the total area of the circular garden, not just half of it. Choice C (519.08) and Choice D (726.73) are also incorrect as they do not reflect the correct calculation for finding the area of half the circular garden.
4. Which of the following is the independent variable in the equation below? f(t)=4t+9
- A. f
- B. 9
- C. t
- D. 4
Correct answer: C
Rationale: The independent variable in a function is the variable that is being manipulated or changed to obtain different values. In the equation f(t) = 4t + 9, the variable 't' is the independent variable. It is the variable that the function f(t) depends on, and changing its value will result in different outputs for the function. The other choices, 'f', '9', and '4', are not the independent variable as they do not represent the variable that is being manipulated to determine the function's output.
5. What percentage of rainfall received during this timeframe is received during the month of October?
- A. 13.50%
- B. 15.10%
- C. 16.90%
- D. 17.7%
Correct answer: D
Rationale: To determine the percentage of rainfall received during the month of October, we must first calculate the total rainfall for October and the total rainfall for the entire timeframe. Given that the total rainfall for October is 18.9 inches and the total rainfall from January to November is 106.3 inches, we can proceed with the calculation. The percentage is calculated as (18.9/106.3) x 100 = 17.7%. Therefore, the correct answer is D, 17.7%. Choice A (13.50%), Choice B (15.10%), and Choice C (16.90%) are incorrect as they do not align with the accurate calculation based on the provided data.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access