multiply 35 by 58
Logo

Nursing Elites

ATI TEAS 7

TEAS Test Math Questions

1. What is the result of multiplying (3/5) by (5/8)?

Correct answer: A

Rationale: To multiply fractions, multiply the numerators together and the denominators together. For (3/5) * (5/8), you get (3*5) / (5*8) = 15 / 40, which simplifies to 3/8. Therefore, the correct answer is A. Choice B (3/5) is incorrect as it is one of the original fractions being multiplied. Choice C (15/40) is the result of the multiplication but not simplified to its lowest terms. Choice D (3/30) is incorrect as the numerator is not the result of multiplying 3 and 5 together.

2. One roommate is saving to buy a house, so each month, he puts money aside in a special house savings account. The ratio of his monthly house savings to his rent is 1:3. If he pays $270 per month in rent, how much money does he put into his house savings account each month?

Correct answer: A

Rationale: The ratio of his savings to his rent is 1:3, which means that for every $3 he pays in rent, he saves $1 for the purchase of a house. To calculate the amount saved, divide $270 by 3: $270 ÷ 3 = $90. Therefore, he puts $90 into his house savings account each month. Choice B, $270, is incorrect because that is the amount he pays in rent, not the amount saved. Choices C and D, $730 and $810, are incorrect as they do not align with the 1:3 ratio described in the question.

3. Robert is planning to drive 1,800 miles on a cross-country trip. If his car gets 30 miles per gallon and his tank holds 12 gallons of gas, how many tanks of gas will he need to complete the trip?

Correct answer: B

Rationale: To find out how many tanks of gas Robert needs for the 1,800-mile trip, first, we calculate the distance his car can travel on a full tank: 30 miles per gallon × 12 gallons = 360 miles per tank. Next, divide the total trip distance by the distance per tank: 1,800 miles ÷ 360 miles per tank = 5 tanks. Therefore, Robert will need 5 tanks of gas to complete the cross-country trip. Choices A, C, and D are incorrect as they do not accurately calculate the number of tanks needed based on the given information.

4. Solve for x: 2x + 4 = x - 6

Correct answer: D

Rationale: To solve the equation 2x + 4 = x - 6, first, subtract x from both sides to get x + 4 = -6. Then, subtract 4 from both sides to isolate x, resulting in x = -10. Therefore, the correct answer is x = -10. Choice A is incorrect as it does not follow the correct steps of solving the equation. Choice B is incorrect as it is the result of combining x terms incorrectly. Choice C is incorrect as it is not the correct result of solving the equation step by step.

5. What is the area of a triangle with a base of 10 cm and a height of 7 cm?

Correct answer: B

Rationale: To find the area of a triangle, you use the formula A = 1/2 × base × height. Substituting the given values: A = 1/2 × 10 cm × 7 cm = 35 cm². Therefore, the correct answer is B. Choice A (70 cm²) is incorrect as it seems to be the product of the base and height rather than the area formula. Choice C (140 cm²) is incorrect as it appears to be twice the correct answer, possibly a result of a miscalculation. Choice D (100 cm²) is incorrect as it does not reflect the correct calculation based on the given base and height values.

Similar Questions

A study divides patients into 3 groups with fractions: 1/2, 1/3, and 1/6. Which group has the largest number of patients?
What is the volume of a ball with a diameter of 7 inches?
A patient requires a 30% decrease in the dosage of their medication. Their current dosage is 340 mg. What will their dosage be after the decrease?
If a product's original price is $80 and it is discounted by 20%, what is the final price?
If you have a rectangle with a width of 5 inches and a length of 10 inches and scale it by a factor of 2, what will the new perimeter be?

Access More Features

ATI TEAS Premium Plus
$150/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses