multiply 35 by 58
Logo

Nursing Elites

ATI TEAS 7

TEAS Test Math Questions

1. What is the result of multiplying (3/5) by (5/8)?

Correct answer: A

Rationale: To multiply fractions, multiply the numerators together and the denominators together. For (3/5) * (5/8), you get (3*5) / (5*8) = 15 / 40, which simplifies to 3/8. Therefore, the correct answer is A. Choice B (3/5) is incorrect as it is one of the original fractions being multiplied. Choice C (15/40) is the result of the multiplication but not simplified to its lowest terms. Choice D (3/30) is incorrect as the numerator is not the result of multiplying 3 and 5 together.

2. Four people split a bill. The first person pays for 1/3, the second person pays for 1/4, and the third person pays for 1/6. What fraction of the bill does the fourth person pay?

Correct answer: D

Rationale: To find out what fraction of the bill the fourth person pays, you first calculate the total fraction paid by the first three people: 1/3 + 1/4 + 1/6 = 4/12 + 3/12 + 2/12 = 9/12 = 3/4. This means that the first three people paid 3/4 of the bill. Therefore, the fourth person pays the remaining fraction: 1 - 3/4 = 1/4. So, the fourth person pays 1/4 of the bill. Choice A, 1/4, is incorrect because this is the total fraction paid by the first person. Choice B, 1/6, is incorrect as this is the fraction paid by the second person. Choice C, 1/3, is incorrect as this is the fraction paid by the third person.

3. Solve the following equation: 3(2y+50)−4y=500

Correct answer: B

Rationale: To solve the equation 3(2y+50)−4y=500, first distribute to get 6y+150−4y=500. Combining like terms results in 2𝑦 + 150 = 500. By subtracting 150 from both sides, we get 2y = 350. Dividing by 2 gives y = 175. Therefore, the correct answer is B. Choices A, C, and D are incorrect because they do not correctly follow the steps of distributing, combining like terms, and isolating the variable to solve for y.

4. What is the difference between two negative numbers?

Correct answer: B

Rationale: The correct answer is B: 'Positive number.' When you subtract one negative number from another negative number, the result can be a positive number. For example, the difference between -5 and -3 is 2, which is a positive number. Choice A, 'Negative number,' is incorrect because the result of subtracting two negative numbers can be positive. Choice C, 'Zero,' is incorrect because the difference between two negative numbers is not always zero. Choice D, 'Not enough information,' is incorrect because there is enough information to determine that the difference between two negative numbers can be a positive number.

5. A person drives 300 miles at 60 mph, then another 200 miles at 80 mph, with a 30-minute break. How long does the trip take?

Correct answer: C

Rationale: To find the total time, we calculate the time taken for each segment: 300 miles at 60 mph = 300 miles ÷ 60 mph = 5 hours; 200 miles at 80 mph = 200 miles ÷ 80 mph = 2.5 hours. Adding these gives 5 hours + 2.5 hours = 7.5 hours. Converting the 30-minute break to hours (30 minutes ÷ 60 = 0.5 hours), the total time taken is 7.5 hours + 0.5 hours = 8 hours. Therefore, the correct answer is not among the given choices. The rationale provided in the original question is incorrect as it does not account for the break time and has a calculation error in adding the individual times.

Similar Questions

What score must Dwayne get on his next math test to maintain an overall average of at least 90?
How much did he save from the original price?
What is the least common denominator for the fractions below? 1/2, 2/3, 4/5
Jayden rides his bike for 5/8 miles. He takes a break and rides another 3/4 miles. How many miles does he ride?
In a study where 60% of respondents use smartphones to check their email, and 5,000 respondents were included, how many respondents use smartphones for email?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$1/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses