a gift box has a length of 14 inches a height of 8 inches and a width of 6 inches how many square inches of wrapping paper are needed to wrap the box
Logo

Nursing Elites

ATI TEAS 7

TEAS Practice Math Test

1. A gift box has a length of 14 inches, a height of 8 inches, and a width of 6 inches. How many square inches of wrapping paper are needed to wrap the box?

Correct answer: C

Rationale: To find the surface area of a rectangular prism, you use the formula SA = 2lw + 2wh + 2hl, where l is the length, w is the width, and h is the height. Substituting the given dimensions, the calculation would be SA = 2(14)(6) + 2(6)(8) + 2(8)(14) = 168 + 96 + 224 = 488 square inches. Therefore, 488 square inches of wrapping paper are needed to wrap the box. Choice A (56), Choice B (244), and Choice D (672) are incorrect because they do not represent the correct surface area calculation for the given box dimensions.

2. What is any number raised to the power of 1?

Correct answer: A

Rationale: The correct answer is A: 'Itself.' When any number is raised to the power of 1, it remains unchanged and is equal to itself. This is a fundamental property of exponents. Choice B, 'One,' is incorrect because raising a number to the power of 1 does not result in the answer being 1. Choice C, 'Zero,' is incorrect as any non-zero number raised to the power of 1 is itself, not zero. Choice D, 'The number multiplied by 2,' is incorrect because raising a number to the power of 1 does not involve multiplying it by 2.

3. x ÷ 7 = x − 36. Solve the equation. Which of the following is correct?

Correct answer: B

Rationale: To solve the equation x ÷ 7 = x − 36, start by multiplying both sides by 7 to get 7(x ÷ 7) = 7(x − 36), which simplifies to x = 7x − 252. Next, subtract 7x from both sides to get -6x = -252. Finally, divide both sides by -6 to solve for x, which results in x = 42. Therefore, the correct answer is x = 42. Choice A (x = 6), Choice C (x = 4), and Choice D (x = 252) are incorrect as they do not align with the correct solution derived from the equation.

4. What is the overall median of Dwayne's current scores: 78, 92, 83, 97?

Correct answer: B

Rationale: To find the median of a set of numbers, first arrange the scores in ascending order: 78, 83, 92, 97. Since there is an even number of scores, we find the median by taking the average of the two middle values. In this case, the middle values are 83 and 92. Calculating (83 + 92) / 2 = 85, we determine that the overall median of Dwayne's scores is 85. Choice A (19) is incorrect as it does not correspond to any value in the given set of scores. Choice C (83) is the median of the original set but not the overall median once arranged. Choice D (87.5) is the average of all scores but not the median.

5. Which of the following expressions represents the sum of three times a number and eight times a different number?

Correct answer: A

Rationale: The correct expression for the sum of three times a number and eight times a different number is given by 3x + 8y. This represents adding three times the variable x (3x) to eight times the variable y (8y). Choice B (8x + 3x) is incorrect as it represents adding eight times x to three times x, which is redundant. Choice C (3x - 8y) is incorrect because it represents subtracting eight times y from three times x, not their sum. Choice D (8x - 3y) is also incorrect as it represents subtracting three times y from eight times x, not their sum.

Similar Questions

What is the best estimate in meters for the average width of a doorway?
How many quarts are in a gallon?
Three roommates decided to combine their money to buy a birthday gift for the fourth roommate. The first roommate contributed $12.03, the second roommate gave $11.96, and the third roommate donated $12.06. Estimate the total amount of money the roommates used to purchase the gift
What is a factor?
What is the solution to 4 x 7 + (25 – 21)²?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses