ATI TEAS 7
TEAS Practice Math Test
1. A gift box has a length of 14 inches, a height of 8 inches, and a width of 6 inches. How many square inches of wrapping paper are needed to wrap the box?
- A. 56
- B. 244
- C. 488
- D. 672
Correct answer: C
Rationale: To find the surface area of a rectangular prism, you use the formula SA = 2lw + 2wh + 2hl, where l is the length, w is the width, and h is the height. Substituting the given dimensions, the calculation would be SA = 2(14)(6) + 2(6)(8) + 2(8)(14) = 168 + 96 + 224 = 488 square inches. Therefore, 488 square inches of wrapping paper are needed to wrap the box. Choice A (56), Choice B (244), and Choice D (672) are incorrect because they do not represent the correct surface area calculation for the given box dimensions.
2. Which of the following is NOT a way to write 40 percent of N?
- A. 0.4N
- B. N/40
- C. 2/5 N
- D. 40N/100
Correct answer: B
Rationale: The correct answer is B: N/40. To find 40% of N, you multiply N by 0.4, so 0.4N is the correct representation. Choice B, N/40, is incorrect because dividing N by 40 does not give you 40% of N. Choice C, 2/5 N, is equivalent to 40% of N since 2/5 is the same as 40% when simplified. Choice D, 40N/100, is also correct since 40% can be represented as 40/100, which simplifies to 0.4, making 40N/100 another valid way to write 40% of N.
3. Solve for x: 4(2x - 6) = 10x - 6
- A. x = 5
- B. x = -7
- C. x = -9
- D. x = 10
Correct answer: C
Rationale: To solve the equation 4(2x - 6) = 10x - 6, first distribute 4 into the parentheses: 8x - 24 = 10x - 6. Next, simplify the equation by rearranging terms: 8x - 10x = -6 + 24, which gives -2x = 18. Solving for x by dividing by -2 on both sides gives x = -9. Therefore, the correct answer is x = -9. Choice A (x = 5), Choice B (x = -7), and Choice D (x = 10) are incorrect solutions obtained by errors in solving the equation.
4. Kimberley earns $10 an hour babysitting, and after 10 p.m., she earns $12 an hour, with the amount paid being rounded to the nearest hour accordingly. On her last job, she worked from 5:30 p.m. to 11 p.m. In total, how much did Kimberley earn on her last job?
- A. $45
- B. $57
- C. $62
- D. $42
Correct answer: C
Rationale: Kimberley worked from 5:30 p.m. to 11 p.m., which is a total of 5.5 hours before 10 p.m. (from 5:30 p.m. to 10 p.m.) and 1 hour after 10 p.m. The earnings she made before 10 p.m. at $10 an hour was 5.5 hours * $10 = $55. Her earnings after 10 p.m. for the rounded hour were 1 hour * $12 = $12. Therefore, her total earnings for the last job were $55 + $12 = $67. Since the amount is rounded to the nearest hour, the closest rounded amount is $62. Therefore, Kimberley earned $62 on her last job. Choice A is incorrect as it does not consider the additional earnings after 10 p.m. Choices B and D are incorrect as they do not factor in the hourly rates and the total hours worked accurately.
5. Mom's car drove 72 miles in 90 minutes. How fast did she drive in feet per second?
- A. 0.8 feet per second
- B. 48.9 feet per second
- C. 0.009 feet per second
- D. 70.4 feet per second
Correct answer: B
Rationale: To convert miles per hour to feet per second, you need to convert miles to feet and minutes to seconds. First, convert 72 miles to feet using the conversion factor 1 mile = 5280 feet: 72 miles * 5280 feet/mile = 380160 feet. Then, convert 90 minutes to seconds: 90 minutes * 60 seconds/minute = 5400 seconds. Now, to find the speed in feet per second, divide the distance traveled in feet by the time in seconds: 380160 feet / 5400 seconds = 70.4 feet per second. Therefore, the correct answer is 70.4 feet per second. Choice A, 0.8 feet per second, is incorrect as it is a much lower speed. Choice C, 0.009 feet per second, is also incorrect as it is too low. Choice D, 70.4 feet per second, would be correct if the conversion calculations were accurate, but in this case, it's not the correct answer.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access