express as an improper fraction 8 37
Logo

Nursing Elites

ATI TEAS 7

TEAS Test Sample Math Questions

1. Express as an improper fraction: 8 3/7

Correct answer: D

Rationale: To convert the mixed number 8 3/7 to an improper fraction, multiply the whole number (8) by the denominator (7) and add the numerator (3) to get the numerator of the improper fraction. This gives us (8*7 + 3) / 7 = 59/7. Therefore, the correct answer is 59/7. Choice A (11/7), choice B (21/8), and choice C (5/3) are incorrect because they do not correctly convert the mixed number to an improper fraction.

2. Can a rational number be a fraction or decimal, or must it be a whole number?

Correct answer: C

Rationale: The correct answer is C. A rational number can be a whole number, fraction, or decimal. A rational number is any number that can be expressed as a ratio of two integers (where the denominator is not zero), which includes whole numbers, fractions, and decimals. Choice A is incorrect because rational numbers are not limited to being whole numbers. Choice B is incorrect because a rational number can be a fraction, decimal, or whole number. Choice D is incorrect because rational numbers can definitely be decimals, as long as the decimal representation is either terminating or repeating.

3. Simplify (x^2 - y^2) / (x - y)

Correct answer: A

Rationale: The expression 𝑥^2 - 𝑦^2 is a difference of squares, which follows the identity: 𝑥^2 - 𝑦^2 = (𝑥 + 𝑦)(𝑥 - 𝑦). Therefore, the given expression becomes: (𝑥^2 - 𝑦^2) / (𝑥 - 𝑦) = (𝑥 + 𝑦)(𝑥 - 𝑦) / (𝑥 - 𝑦). Since (𝑥 - 𝑦) appears in both the numerator and the denominator, they cancel each other out, leaving 𝑥 + 𝑦. Thus, the simplified form of (𝑥^2 - 𝑦^2) / (𝑥 - 𝑦) is 𝑥 + 𝑦. Therefore, the correct answer is A (x + y). Option B (x - y) is incorrect as it does not result from simplifying the given expression. Option C (1) is incorrect as it does not account for the variables x and y present in the expression. Option D ((x + y)/(x - y)) is incorrect as it presents the simplified form in a different format than the correct answer.

4. Which of the following is the y-intercept of the line whose equation is 7y − 42x + 7 = 0?

Correct answer: C

Rationale: To find the y-intercept, set x = 0 in the equation 7y − 42x + 7 = 0. This simplifies to 7y - 42(0) + 7 = 0, which gives 7y = -7. Solving for y, we get y = -1. Therefore, the y-intercept is where x = 0, so the correct answer is (0, -1). Choice A (1/6, 0) is incorrect as it does not satisfy the given equation when x = 0. Choice B (6, 0) is incorrect as it represents the x-intercept. Choice D (-1, 0) is incorrect as it does not correspond to the y-intercept of the given equation.

5. Which of the following describes a graph that represents a proportional relationship?

Correct answer: C

Rationale: A graph that has a y-intercept of 0 indicates a proportional relationship because the starting value is 0, and no amount is added to or subtracted from the term containing the slope. In this case, choice C is correct as it has a y-intercept of 0, which aligns with the characteristics of a proportional relationship. Choices A, B, and D have non-zero y-intercepts, indicating a starting value other than 0, which does not represent a proportional relationship.

Similar Questions

The hypotenuse (side C) of a triangle is 13 inches long. Which of the following pairs of measurements could be correct for the lengths of the other two sides of the triangle? (Note: A² + B² = C²)
What is the difference between two negative numbers?
Which of the following options correctly orders the numbers below from least to greatest? 235.971, 145.884, -271.906, -193.823
Arrange the following fractions from least to greatest: 2/3, 1/2, 5/8, 7/9.
If 35% of a paycheck is deducted for taxes and 4% for insurance, what is the total percent taken out of the paycheck?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses