ATI TEAS 7
TEAS Test Math Questions
1. Jayden rides his bike for 5/8 miles. He takes a break and rides another 3/4 miles. How many miles does he ride?
- A. 1 3/8 miles
- B. 1 1/2 miles
- C. 1 7/8 miles
- D. 2 miles
Correct answer: A
Rationale: To find the total distance Jayden rides, you need to add the fractions 5/8 + 3/4. To add these fractions, you must ensure they have a common denominator. In this case, the common denominator is 8. So, 5/8 + 3/4 = 5/8 + 6/8 = 11/8. Since 11/8 can be simplified to 1 3/8, Jayden rides a total of 1 3/8 miles. Choice B (1 1/2 miles), Choice C (1 7/8 miles), and Choice D (2 miles) are incorrect as they do not accurately represent the total distance calculated by adding the two fractions, which is 1 3/8 miles.
2. Which of the following statements is true?
- A. The mean is less than the median
- B. The mode is greater than the median
- C. The mode is less than the mean, median, and range
- D. The mode is equal to the range
Correct answer: A
Rationale: The mean is the average of a set of numbers, while the median is the middle value when the numbers are arranged in order. If a set of numbers is skewed to one side with some outliers, the mean can be influenced by these extreme values, causing it to be greater or less than the median. In cases of skewed distribution, the mean typically shifts towards the direction of the outliers, making it less than the median. Choice B is incorrect because the mode, which is the most frequent number in a dataset, may or may not be greater than the median. Choice C is incorrect because the mode can be greater than the mean or median, depending on the data. Choice D is incorrect because the mode, representing the most frequent value, has no direct relationship with the range, which is the difference between the highest and lowest values in a dataset.
3. How will the number 89632 be written if rounded to the nearest hundred?
- A. 847.9
- B. 900
- C. 847.89
- D. 847.896
Correct answer: B
Rationale: Rounding the number 89632 to the nearest hundred means keeping only two digits before the decimal point. The digit in the hundredth place is the digit in the thousands place of the original number, which is 6. Since 6 is equal to or greater than 5, the digit in the hundredth place, which is 3, gets rounded up. Thus, the number 89632 rounded to the nearest hundred is 900. Choice A, 847.9, rounds the number to the nearest tenth, not hundredth. Choice C, 847.89, adds an extra decimal place which is not correct for rounding to the nearest hundred. Choice D, 847.896, adds more decimal places than necessary for rounding to the nearest hundred.
4. Round 8.067 to the nearest tenth.
- A. 8.1
- B. 8.1
- C. 8
- D. 8.11
Correct answer: A
Rationale: To round 8.067 to the nearest tenth, you look at the digit in the hundredth place, which is 6. Since 6 is equal to or greater than 5, you round up the digit in the tenth place. Therefore, 8.067 rounded to the nearest tenth is 8.1. Choice B (8.1) is incorrect as it duplicates the correct answer. Choice C (8) is incorrect as it does not account for the decimal part. Choice D (8.11) is incorrect as it rounds the number to the nearest hundredth, not the nearest tenth.
5. What is the perimeter of a rectangle with a length of 7 cm and a width of 3 cm?
- A. 21 cm
- B. 10 cm
- C. 14 cm
- D. 20 cm
Correct answer: D
Rationale: To find the perimeter of a rectangle, you add the lengths of all its sides. In this case, the formula for the perimeter of a rectangle is 2*(length + width). Substituting the given values, we get: 2*(7 cm + 3 cm) = 2*(10 cm) = 20 cm. Therefore, the correct answer is 20 cm. Choice A (21 cm) is incorrect because it is the sum of the individual sides rather than the perimeter. Choice B (10 cm) is incorrect because it only represents one side of the rectangle. Choice C (14 cm) is incorrect as it is not the total perimeter of the rectangle.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access