ATI TEAS 7
TEAS Test Math Questions
1. Jayden rides his bike for 5/8 miles. He takes a break and rides another 3/4 miles. How many miles does he ride?
- A. 1 3/8 miles
- B. 1 1/2 miles
- C. 1 7/8 miles
- D. 2 miles
Correct answer: A
Rationale: To find the total distance Jayden rides, you need to add the fractions 5/8 + 3/4. To add these fractions, you must ensure they have a common denominator. In this case, the common denominator is 8. So, 5/8 + 3/4 = 5/8 + 6/8 = 11/8. Since 11/8 can be simplified to 1 3/8, Jayden rides a total of 1 3/8 miles. Choice B (1 1/2 miles), Choice C (1 7/8 miles), and Choice D (2 miles) are incorrect as they do not accurately represent the total distance calculated by adding the two fractions, which is 1 3/8 miles.
2. Simplify the following expression: (1/4) × (3/5) ÷ 1 (1/8)
- A. 8/15
- B. 27/160
- C. 2/15
- D. 27/40
Correct answer: C
Rationale: First, convert the mixed number 1 (1/8) into an improper fraction: 1 (1/8) = 9/8. Now, simplify the expression: (1/4) × (3/5) ÷ (9/8). To divide by a fraction, multiply by its reciprocal: (1/4) × (3/5) × (8/9) = 24/180 = 2/15. Thus, the simplified expression is 2/15. Choice A (8/15) is incorrect because the correct answer is 2/15. Choice B (27/160) is incorrect as it is not the result of the given expression. Choice D (27/40) is incorrect as it does not match the simplified expression obtained.
3. A recipe calls for 5.5 teaspoons of vanilla. 1 teaspoon equals approximately 4.93 mL. Which of the following is the correct amount of vanilla in mL?
- A. 10.2 mL
- B. 12 mL
- C. 7.43 mL
- D. 27 mL
Correct answer: D
Rationale: To convert the amount of vanilla from teaspoons to milliliters, we multiply the number of teaspoons by the conversion factor of 4.93 mL/teaspoon. 5.5 teaspoons * 4.93 mL/teaspoon = 27.115 mL, which rounds to 27 mL. Therefore, the correct amount of vanilla in mL is 27 mL. Choice A (10.2 mL), Choice B (12 mL), and Choice C (7.43 mL) are incorrect as they do not correctly convert the given amount of teaspoons to milliliters based on the provided conversion factor.
4. How do you find the radius of a circle when given the diameter? How do you find the radius of a circle when given the circumference?
- A. Radius = Diameter ÷ 2; Radius = Circumference ÷ 2π
- B. Radius = Diameter ÷ 3; Radius = Circumference ÷ π
- C. Radius = Diameter × 2; Radius = Circumference × 2π
- D. Radius = Diameter ÷ 4; Radius = Circumference ÷ π
Correct answer: A
Rationale: The correct way to find the radius of a circle when given the diameter is by dividing the diameter by 2 to get the radius (Radius = Diameter ÷ 2). When given the circumference, you need to divide the circumference by 2π to find the radius (Radius = Circumference ÷ 2π). Choice A provides the accurate formulas for finding the radius in both scenarios. Choices B, C, and D present incorrect formulas that do not align with the correct calculations for determining the radius of a circle based on the given information.
5. Four people split a bill. The first person pays 1/5, the second person pays 1/3, and the third person pays 1/12. What fraction of the bill does the fourth person pay?
- A. 1/4
- B. 13/60
- C. 47/60
- D. 1/4
Correct answer: C
Rationale: To find the fourth person's share, subtract the fractions paid by the first three people from the total bill (1). The first person pays 1/5, the second person pays 1/3, and the third person pays 1/12. Adding these fractions gives 7/15. Subtracting this from 1 gives the fourth person's share as 8/15, which simplifies to 4/5. Therefore, the fourth person pays 4/5 of the bill. Option A (1/4) is incorrect because it does not consider the fractions paid by the first three people. Option B (13/60) is incorrect as it is not the remainder after subtracting the first three fractions from 1. Option D (1/4) is a duplicate of Option A and is also incorrect.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access