ATI TEAS 7
TEAS Test Math Questions
1. How much hydrochloric acid (HCl) is necessary to make 2.5 liters of a 5:1 solution of water (in liters) to HCl (in grams)?
- A. 0.5 grams
- B. 2 grams
- C. 5 grams
- D. 12.5 grams
Correct answer: C
Rationale: To create a 5:1 solution in 2.5 liters, 0.5 liters are needed for HCl, which translates to 5 grams. The correct answer is 5 grams, as this amount corresponds to the 5:1 ratio specified in the solution. Choices A, B, and D are incorrect because they do not align with the 5:1 ratio and the volume of the solution.
2. While at the local ice skating rink, Cora went around the rink 27 times in total. She slipped and fell 20 of the 27 times she skated around the rink. What approximate percentage of the times around the rink did Cora not slip and fall?
- A. 37%
- B. 74%
- C. 26%
- D. 15%
Correct answer: C
Rationale: To find the approximate percentage of the times Cora did not slip and fall, subtract the times she fell (20) from the total times around the rink (27), which gives 7. Then, divide the number of times she did not slip and fall (7) by the total times around the rink (27) and multiply by 100 to get the percentage. So, 7 divided by 27 equals 0.259, which rounds to approximately 26%. Therefore, the correct answer is 26%. Choice A (37%) is incorrect because it does not reflect the calculation based on the given information. Choice B (74%) is incorrect as it is not the result of the correct calculation. Choice D (15%) is incorrect as it does not match the calculated percentage based on the scenario provided.
3. What is the probability of consecutively pulling two more orange blocks, without replacement, from a bag containing 3 orange blocks, 5 green blocks, and 4 purple blocks?
- A. 3/12
- B. 3/55
- C. 2/10
- D. 1/3
Correct answer: B
Rationale: To calculate the probability of consecutively pulling two more orange blocks without replacement, we first determine the probability of pulling an orange block on the first draw, which is 3/12 (3 orange blocks out of 12 total blocks). After removing one orange block, there are only 11 blocks left, so the probability of pulling another orange block on the second draw is 2/11. To find the combined probability, we multiply the probabilities together: (3/12) * (2/11) = 6/132 = 3/55. Therefore, the correct answer is B. Choice A (3/12) incorrectly simplifies the probability before calculating the second draw. Choice C (2/10) does not consider the specific number of orange blocks in the bag. Choice D (1/3) does not account for the reduced number of blocks after the first draw.
4. What is the GCF (greatest common factor)?
- A. The largest factor that all the numbers share
- B. The smallest factor that all the numbers share
- C. The largest multiple that all the numbers share
- D. The smallest multiple that all the numbers share
Correct answer: A
Rationale: The greatest common factor (GCF) of a set of numbers is the largest factor that all the numbers share. This factor represents the highest number that can evenly divide each of the numbers in the set without any remainder. Choice B, 'The smallest factor that all the numbers share,' is incorrect because the GCF is the greatest, not the smallest, factor. Choices C and D, 'The largest multiple that all the numbers share' and 'The smallest multiple that all the numbers share,' are also incorrect as the GCF refers to factors, not multiples.
5. A patient requires a 30% increase in the dosage of their medication. Their current dosage is 270 mg. What will their dosage be after the increase?
- A. 81 mg
- B. 270 mg
- C. 300 mg
- D. 351 mg
Correct answer: D
Rationale: To calculate a 30% increase from the current dosage of 270 mg, first find 30% of 270, which is 81 mg. Add this 81 mg increase to the original dosage of 270 mg to get the new dosage, which is 351 mg (270 mg + 81 mg = 351 mg). Therefore, the correct answer is 351 mg. Choice A (81 mg) is incorrect because this value represents only the calculated 30% increase, not the total dosage after the increase. Choice B (270 mg) is the original dosage and does not account for the 30% increase. Choice C (300 mg) is close to the correct answer but does not consider the precise 30% increase calculation, leading to an incorrect total dosage.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access