ATI TEAS 7
TEAS 7 Math Practice Test
1. A patient is prescribed 5 mg of medication per kilogram of body weight. If the patient weighs 60 kg, how many milligrams of medication should the patient receive?
- A. 100 mg
- B. 150 mg
- C. 300 mg
- D. 400 mg
Correct answer: C
Rationale: The correct calculation to determine the medication dosage for a patient weighing 60 kg is: 5 mg/kg x 60 kg = 300 mg. Therefore, the patient should receive 300 mg of medication. Choice A (100 mg) is incorrect as it does not account for the patient's weight. Choice B (150 mg) is incorrect as it miscalculates the dosage. Choice D (400 mg) is incorrect as it overestimates the dosage based on the patient's weight.
2. Veronica has to create the holiday schedule for the neonatal unit at her hospital. 35% of her staff will be unavailable during the holidays, and of the remaining staff, only 20% are certified to work in the neonatal unit. What percentage of the total staff is certified and available to work?
- A. 7%
- B. 13%
- C. 65%
- D. 80%
Correct answer: B
Rationale: The correct answer is 13%. To find the percentage of the total staff that is certified and available to work, we first calculate the percentage of staff available, which is 100% - 35% = 65%. Then, we find the percentage of the available staff that is certified, which is 20% of 65% = 0.20 × 0.65 = 0.13, or 13%.
3. Which of the following statements is true?
- A. The mean is less than the median
- B. The mode is greater than the median
- C. The mode is less than the mean, median, and range
- D. The mode is equal to the range
Correct answer: A
Rationale: The mean is the average of a set of numbers, while the median is the middle value when the numbers are arranged in order. If a set of numbers is skewed to one side with some outliers, the mean can be influenced by these extreme values, causing it to be greater or less than the median. In cases of skewed distribution, the mean typically shifts towards the direction of the outliers, making it less than the median. Choice B is incorrect because the mode, which is the most frequent number in a dataset, may or may not be greater than the median. Choice C is incorrect because the mode can be greater than the mean or median, depending on the data. Choice D is incorrect because the mode, representing the most frequent value, has no direct relationship with the range, which is the difference between the highest and lowest values in a dataset.
4. A study was conducted where patients were divided into three groups: 1/2 in Group Alpha, 1/3 in Group Beta, and 1/6 in Group Gamma. Which group is the smallest?
- A. Group Alpha
- B. Group Beta
- C. Group Gamma
- D. Group Gamma
Correct answer: C
Rationale: The smallest group is Group Gamma, which had 1/6 of the total number of patients. To determine the smallest group, compare the fractions representing the portions of patients in each group. 1/6 is smaller than 1/3 and 1/2, making Group Gamma the smallest. Group Alpha and Group Beta have larger fractions of patients, making them larger groups compared to Group Gamma.
5. A circle has an area of 121π in². Which of the following is the circumference of the circle in terms of pi (π)?
- A. 11π in
- B. 22π in
- C. 44π in
- D. 5.5π in
Correct answer: B
Rationale: To find the circumference of the circle, we first need to determine the radius. Given that the area of the circle is 121π in², we use the formula for the area of a circle (A = πr²) to find the radius squared. So, r² = 121, which means the radius (r) is 11 in. The circumference of a circle is calculated using the formula 2πr. Substituting the radius value of 11 in, we get 2π(11) = 22π in. Therefore, the correct answer is 22π in. Choice A (11π in), Choice C (44π in), and Choice D (5.5π in) are incorrect because they do not correctly calculate the circumference based on the given area of the circle.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access