ATI TEAS 7
TEAS 7 Math Practice Test
1. A patient is prescribed 5 mg of medication per kilogram of body weight. If the patient weighs 60 kg, how many milligrams of medication should the patient receive?
- A. 100 mg
- B. 150 mg
- C. 300 mg
- D. 400 mg
Correct answer: C
Rationale: The correct calculation to determine the medication dosage for a patient weighing 60 kg is: 5 mg/kg x 60 kg = 300 mg. Therefore, the patient should receive 300 mg of medication. Choice A (100 mg) is incorrect as it does not account for the patient's weight. Choice B (150 mg) is incorrect as it miscalculates the dosage. Choice D (400 mg) is incorrect as it overestimates the dosage based on the patient's weight.
2. Apply the polynomial identity to rewrite (a + b)².
- A. a² + b²
- B. 2ab
- C. a² + 2ab + b²
- D. a² - 2ab + b²
Correct answer: C
Rationale: When you see something like (a + b)², it means you're multiplying (a + b) by itself: (a + b)² = (a + b) × (a + b) To expand this, we use the distributive property (which says you multiply each term in the first bracket by each term in the second bracket): Multiply the first term in the first bracket (a) by both terms in the second bracket: a × a = a² a × b = ab Multiply the second term in the first bracket (b) by both terms in the second bracket: b × a = ab b × b = b² Now, add up all the results from the multiplication: a² + ab + ab + b² Since ab + ab is the same as 2ab, we can simplify it to: a² + 2ab + b² So, (a + b)² = a² + 2ab + b². This is known as a basic polynomial identity, and it shows that when you square a binomial (a two-term expression like a + b), you get three terms: the square of the first term (a²), twice the product of the two terms (2ab), and the square of the second term (b²). Therefore, the correct answer is C (a² + 2ab + b²)
3. What is the least common denominator of two fractions?
- A. The smallest number that is a multiple of both denominators
- B. The smallest number that both fractions can divide into evenly
- C. The least common multiple of both denominators
- D. The greatest common factor of both denominators
Correct answer: C
Rationale: The least common denominator of two fractions is the least common multiple of both denominators. This is because the least common denominator is the smallest number that both denominators can divide into evenly, ensuring that both fractions can be expressed with a common denominator. Choice A is incorrect as the least common denominator is a multiple of both denominators, not a number that multiplies into both. Choice B is incorrect because the common denominator needs to be a multiple of both denominators, not just a number they can divide into evenly. Choice D is incorrect as the greatest common factor is not used to find the least common denominator, but rather the least common multiple.
4. When rounding 245.2678 to the nearest thousandth, which place value would be used to decide whether to round up or round down?
- A. Ten-thousandths
- B. Thousandths
- C. Hundredths
- D. Thousand
Correct answer: A
Rationale: When rounding a number to the nearest thousandth, you look at the digit in the ten-thousandths place to determine whether to round up or down the digit in the thousandths place. In this case, rounding 245.2678 to the nearest thousandth, the digit in the ten-thousandths place is 6, which is greater than or equal to 5, so you would round up the digit in the thousandths place. Therefore, the correct answer is the ten-thousandths place. Choices B, C, and D are incorrect because they do not directly influence the rounding of the thousandths place in this scenario.
5. A rectangular solid box has a square base with a side length of 5 feet and a height of h feet. If the volume of the box is 200 cubic feet, which of the following equations can be used to find h?
- A. 5h = 200
- B. 5h² = 200
- C. 25h = 200
- D. h = 200 ÷ 5
Correct answer: C
Rationale: The volume formula for a rectangular solid is V = l × w × h. In this case, the length and width are both 5 feet. Substituting the values into the formula gives V = 5 × 5 × h = 25h = 200. Therefore, h = 200 ÷ 25 = 8. Option A is incorrect because the product of length, width, and height is not directly equal to the volume. Option B is incorrect as squaring the height is not part of the volume formula. Option D is incorrect as it oversimplifies the relationship between height and volume, not considering the base dimensions.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access