ATI TEAS 7
Practice Math TEAS TEST
1. How many milliliters (mL) are there in a liter?
- A. 1000 mL
- B. 100 mL
- C. 10 mL
- D. 1 mL
Correct answer: A
Rationale: The correct answer is A: 1000 mL. This is a standard conversion in the metric system where 1 liter is equivalent to 1000 milliliters. Choice B, 100 mL, is incorrect as it represents only a tenth of a liter. Choice C, 10 mL, is incorrect as it represents only a hundredth of a liter. Choice D, 1 mL, is significantly less than a liter, as it is only a thousandth of a liter.
2. Solve for x: 4(2x - 6) = 10x - 6
- A. x = 5
- B. x = -7
- C. x = -9
- D. x = 10
Correct answer: C
Rationale: To solve the equation 4(2x - 6) = 10x - 6, first distribute 4 into the parentheses: 8x - 24 = 10x - 6. Next, simplify the equation by rearranging terms: 8x - 10x = -6 + 24, which gives -2x = 18. Solving for x by dividing by -2 on both sides gives x = -9. Therefore, the correct answer is x = -9. Choice A (x = 5), Choice B (x = -7), and Choice D (x = 10) are incorrect solutions obtained by errors in solving the equation.
3. A charter bus driver drove at an average speed of 65 mph for 305 miles. If he stops at a gas station for 15 minutes, then drives another 162 miles at an average speed of 80 mph, how long will it have been since he began the trip?
- A. 0.96 hours
- B. 6.44 hours
- C. 6.69 hours
- D. 6.97 hours
Correct answer: D
Rationale: To find the total time, we first calculate the time taken for the first leg of the trip by dividing the distance of 305 miles by the speed of 65 mph, which equals 4.69 hours. After that, we add the 15 minutes spent at the gas station, which is 0.25 hours. Next, we calculate the time taken for the second leg of the trip by dividing the distance of 162 miles by the speed of 80 mph, which equals 2.03 hours. Adding these times together (4.69 hours + 0.25 hours + 2.03 hours) gives us a total time of 6.97 hours. Therefore, it will have been 6.97 hours since the driver began the trip. Choice A is incorrect as it does not account for the time spent driving the second leg of the trip. Choice B is incorrect as it only considers the time for the first leg of the trip and the time spent at the gas station. Choice C is incorrect as it misses the time taken for the second leg of the trip.
4. A rectangular solid box has a square base with a side length of 5 feet and a height of h feet. If the volume of the box is 200 cubic feet, which of the following equations can be used to find h?
- A. 5h = 200
- B. 5h² = 200
- C. 25h = 200
- D. h = 200 ÷ 5
Correct answer: C
Rationale: The volume formula for a rectangular solid is V = l × w × h. In this case, the length and width are both 5 feet. Substituting the values into the formula gives V = 5 × 5 × h = 25h = 200. Therefore, h = 200 ÷ 25 = 8. Option A is incorrect because the product of length, width, and height is not directly equal to the volume. Option B is incorrect as squaring the height is not part of the volume formula. Option D is incorrect as it oversimplifies the relationship between height and volume, not considering the base dimensions.
5. A consumer makes a $400 down payment on a television that costs $1,570. Which of the following is the number of months it will take to pay off the television with monthly payments of $100?
- A. 12
- B. 16
- C. 15
- D. 11
Correct answer: A
Rationale: After the $400 down payment, the remaining balance is $1,170. With monthly payments of $100, it will take 12 months to pay off the remaining balance. Therefore, the correct answer is 12 months. Choice B (16) is incorrect as it exceeds the required timeframe. Choice C (15) is incorrect as it is close but still one month over the correct timeframe. Choice D (11) is incorrect as it underestimates the time needed to pay off the remaining balance.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access