ATI TEAS 7
Math Practice TEAS Test
1. What is the probability of consecutively pulling two more orange blocks, without replacement, from a bag containing 3 orange blocks, 5 green blocks, and 4 purple blocks?
- A. 3/12
- B. 3/55
- C. 2/10
- D. 1/3
Correct answer: B
Rationale: To calculate the probability of consecutively pulling two more orange blocks without replacement, we first determine the probability of pulling an orange block on the first draw, which is 3/12 (3 orange blocks out of 12 total blocks). After removing one orange block, there are only 11 blocks left, so the probability of pulling another orange block on the second draw is 2/11. To find the combined probability, we multiply the probabilities together: (3/12) * (2/11) = 6/132 = 3/55. Therefore, the correct answer is B. Choice A (3/12) incorrectly simplifies the probability before calculating the second draw. Choice C (2/10) does not consider the specific number of orange blocks in the bag. Choice D (1/3) does not account for the reduced number of blocks after the first draw.
2. Melissa is ordering fencing to enclose a square area of 5625 square feet. How many feet of fencing does she need?
- A. 75 feet
- B. 150 feet
- C. 300 feet
- D. 5,625 feet
Correct answer: C
Rationale: To find the side length of the square, we take the square root of the area: √5625 ft² = 75 ft. The perimeter of a square is 4 times its side length, so the fencing needed is 4 × 75 ft = 300 ft. Therefore, Melissa needs 300 feet of fencing to enclose the square area of 5625 square feet. Option A (75 feet) is the side length of the square, not the fencing needed. Option B (150 feet) is half of the correct answer and does not account for all sides of the square. Option D (5,625 feet) is the total area, not the length of fencing required.
3. What is the sum of two odd numbers, two even numbers, and an odd number and an even number?
- A. Odd + Odd = Even; Even + Even = Even; Odd + Even = Odd
- B. Odd + Odd = Odd; Even + Even = Even; Odd + Even = Even
- C. Odd + Odd = Even; Even + Even = Odd; Odd + Even = Even
- D. Odd + Odd = Odd; Even + Even = Odd; Odd + Even = Even
Correct answer: A
Rationale: The sum of two odd numbers is even because odd numbers have a difference of 1 and adding them results in a multiple of 2. The sum of two even numbers is even because even numbers are multiples of 2. When an odd number and an even number are added, the result is odd because the even number contributes an extra 1 to the sum, making it an odd number. Therefore, the correct answer is A. Choices B, C, and D have incorrect combinations of the sum of odd and even numbers.
4. A closet is filled with red, blue, and green shirts. If 1/4 of the shirts are green and 1/3 are red, what fraction of the shirts are blue?
- A. 1/2
- B. 1/3
- C. 5/12
- D. 1/4
Correct answer: C
Rationale: Let the total number of shirts be x. Given that 1/4 of the shirts are green and 1/3 are red, we have Green = x/4 and Red = x/3. To find the fraction of blue shirts, we subtract the fractions of green and red shirts from 1: Blue fraction = 1 - (1/4 + 1/3) = 1 - (3/12 + 4/12) = 1 - 7/12 = 5/12. Therefore, the fraction of blue shirts is 5/12. Choices A, B, and D are incorrect because they do not accurately represent the fraction of blue shirts given the information provided.
5. Mandy can buy 4 containers of yogurt and 3 boxes of crackers for $9.55. She can buy 2 containers of yogurt and 2 boxes of crackers for $5.90. How much does one box of crackers cost?
- A. $1.75
- B. $2.00
- C. $2.25
- D. $2.50
Correct answer: C
Rationale: To solve this problem, we can set up a system of equations. Let the cost of one container of yogurt be y and the cost of one box of crackers be c. From the first scenario, we have 4y + 3c = 9.55. From the second scenario, we have 2y + 2c = 5.90. Solving these equations simultaneously, we find that c = $2.25. Therefore, one box of crackers costs $2.25. Choice A, $1.75, is incorrect because it does not satisfy the given conditions in the system of equations. Choice B, $2.00, is incorrect as it does not match the calculated solution. Choice D, $2.50, is incorrect as it does not align with the calculated value for one box of crackers.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access