ATI TEAS 7
Math Practice TEAS Test
1. What is the probability of consecutively pulling two more orange blocks, without replacement, from a bag containing 3 orange blocks, 5 green blocks, and 4 purple blocks?
- A. 3/12
- B. 3/55
- C. 2/10
- D. 1/3
Correct answer: B
Rationale: To calculate the probability of consecutively pulling two more orange blocks without replacement, we first determine the probability of pulling an orange block on the first draw, which is 3/12 (3 orange blocks out of 12 total blocks). After removing one orange block, there are only 11 blocks left, so the probability of pulling another orange block on the second draw is 2/11. To find the combined probability, we multiply the probabilities together: (3/12) * (2/11) = 6/132 = 3/55. Therefore, the correct answer is B. Choice A (3/12) incorrectly simplifies the probability before calculating the second draw. Choice C (2/10) does not consider the specific number of orange blocks in the bag. Choice D (1/3) does not account for the reduced number of blocks after the first draw.
2. What is 4.6 rounded to the nearest integer?
- A. 3
- B. 4
- C. 5
- D. 6
Correct answer: C
Rationale: When rounding a decimal number to the nearest integer, if the decimal part is 0.5 or greater, we round up to the next integer; if it is less than 0.5, we round down. In this case, 4.6 is closer to 5 than to 4 because it is exactly halfway between the two integers. Therefore, when rounding 4.6 to the nearest integer, we round up to 5. Choice A (3), B (4), and D (6) are incorrect as they are not the nearest integer to 4.6.
3. Apply the polynomial identity to rewrite (a + b)².
- A. a² + b²
- B. 2ab
- C. a² + 2ab + b²
- D. a² - 2ab + b²
Correct answer: C
Rationale: When you see something like (a + b)², it means you're multiplying (a + b) by itself: (a + b)² = (a + b) × (a + b) To expand this, we use the distributive property (which says you multiply each term in the first bracket by each term in the second bracket): Multiply the first term in the first bracket (a) by both terms in the second bracket: a × a = a² a × b = ab Multiply the second term in the first bracket (b) by both terms in the second bracket: b × a = ab b × b = b² Now, add up all the results from the multiplication: a² + ab + ab + b² Since ab + ab is the same as 2ab, we can simplify it to: a² + 2ab + b² So, (a + b)² = a² + 2ab + b². This is known as a basic polynomial identity, and it shows that when you square a binomial (a two-term expression like a + b), you get three terms: the square of the first term (a²), twice the product of the two terms (2ab), and the square of the second term (b²). Therefore, the correct answer is C (a² + 2ab + b²)
4. On a floor plan drawn at a scale of 1:100, the area of a rectangular room is 30 cm². What is the actual area of the room?
- A. 30,000 cm²
- B. 300 m²
- C. 3,000 m²
- D. 30 m²
Correct answer: D
Rationale: On a 1:100 scale drawing, each centimeter represents one meter. The area of the room in the scale drawing is 30 cm², which means the actual area is 30 m². Choice A (30,000 cm²) is incorrect as it doesn't account for the scale conversion. Choice B (300 m²) is incorrect because it multiplies the scale area directly by 10,000, which is not the correct conversion. Choice C (3,000 m²) is also incorrect as it applies the scale factor incorrectly.
5. After a hurricane struck a Pacific island, donations began flooding into a disaster relief organization. The organization provided four options for donors. What percentage of the funds was donated to support construction costs?
- A. 49%
- B. 23%
- C. 18%
- D. 10%
Correct answer: B
Rationale: The correct answer is B (23%). The information was obtained from the pie chart which indicated that 23% of the funds were allocated to support construction costs. Choice A (49%), Choice C (18%), and Choice D (10%) are incorrect as they do not reflect the accurate percentage designated for construction costs according to the data provided.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access