ATI TEAS 7
Math Practice TEAS Test
1. What is the probability of consecutively pulling two more orange blocks, without replacement, from a bag containing 3 orange blocks, 5 green blocks, and 4 purple blocks?
- A. 3/12
- B. 3/55
- C. 2/10
- D. 1/3
Correct answer: B
Rationale: To calculate the probability of consecutively pulling two more orange blocks without replacement, we first determine the probability of pulling an orange block on the first draw, which is 3/12 (3 orange blocks out of 12 total blocks). After removing one orange block, there are only 11 blocks left, so the probability of pulling another orange block on the second draw is 2/11. To find the combined probability, we multiply the probabilities together: (3/12) * (2/11) = 6/132 = 3/55. Therefore, the correct answer is B. Choice A (3/12) incorrectly simplifies the probability before calculating the second draw. Choice C (2/10) does not consider the specific number of orange blocks in the bag. Choice D (1/3) does not account for the reduced number of blocks after the first draw.
2. x ÷ 7 = x − 36. Solve the equation. Which of the following is correct?
- A. x = 6
- B. x = 42
- C. x = 4
- D. x = 252
Correct answer: B
Rationale: To solve the equation x ÷ 7 = x − 36, start by multiplying both sides by 7 to get 7(x ÷ 7) = 7(x − 36), which simplifies to x = 7x − 252. Next, subtract 7x from both sides to get -6x = -252. Finally, divide both sides by -6 to solve for x, which results in x = 42. Therefore, the correct answer is x = 42. Choice A (x = 6), Choice C (x = 4), and Choice D (x = 252) are incorrect as they do not align with the correct solution derived from the equation.
3. A triangle has dimensions of 9 cm, 4 cm, and 7 cm. The triangle is reduced by a scale factor of x. Which of the following represents the dimensions of the dilated triangle?
- A. 8.25 cm, 3.25 cm, 6.25 cm
- B. 4.5 cm, 2 cm, 3.5 cm
- C. 6.75 cm, 3 cm, 5.25 cm
- D. 4.95 cm, 2.2 cm, 3.85 cm
Correct answer: C
Rationale: When reducing a figure by a scale factor, each dimension is multiplied by the same scale factor. In this case, the scale factor is not provided in the question. To find the scale factor, you would divide the new lengths of the sides by the original lengths. The scaled-down triangle's dimensions are the original dimensions multiplied by the scale factor. By performing the calculations, the dimensions of the dilated triangle are 6.75 cm, 3 cm, and 5.25 cm, which matches choice C. Choices A, B, and D have incorrect dimensions as they do not result from the correct application of the scale factor to the original triangle's dimensions.
4. A person drives 300 miles at 60 mph, then another 200 miles at 80 mph, with a 30-minute break. How long does the trip take?
- A. 5.5 hours
- B. 7 hours
- C. 6 hours
- D. 4.5 hours
Correct answer: C
Rationale: To find the total time, we calculate the time taken for each segment: 300 miles at 60 mph = 300 miles ÷ 60 mph = 5 hours; 200 miles at 80 mph = 200 miles ÷ 80 mph = 2.5 hours. Adding these gives 5 hours + 2.5 hours = 7.5 hours. Converting the 30-minute break to hours (30 minutes ÷ 60 = 0.5 hours), the total time taken is 7.5 hours + 0.5 hours = 8 hours. Therefore, the correct answer is not among the given choices. The rationale provided in the original question is incorrect as it does not account for the break time and has a calculation error in adding the individual times.
5. What is the result of multiplying (3/5) by (5/8)?
- A. 3/8
- B. 3/5
- C. 15/40
- D. 3/30
Correct answer: A
Rationale: To multiply fractions, multiply the numerators together and the denominators together. For (3/5) * (5/8), you get (3*5) / (5*8) = 15 / 40, which simplifies to 3/8. Therefore, the correct answer is A. Choice B (3/5) is incorrect as it is one of the original fractions being multiplied. Choice C (15/40) is the result of the multiplication but not simplified to its lowest terms. Choice D (3/30) is incorrect as the numerator is not the result of multiplying 3 and 5 together.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access