ATI TEAS 7
TEAS Math Practice Test
1. Four people split a bill. The first person pays for 1/3, the second person pays for 1/4, and the third person pays for 1/6. What fraction of the bill does the fourth person pay?
- A. 1/4
- B. 1/6
- C. 1/3
- D. 1/12
Correct answer: D
Rationale: To find out what fraction of the bill the fourth person pays, you first calculate the total fraction paid by the first three people: 1/3 + 1/4 + 1/6 = 4/12 + 3/12 + 2/12 = 9/12 = 3/4. This means that the first three people paid 3/4 of the bill. Therefore, the fourth person pays the remaining fraction: 1 - 3/4 = 1/4. So, the fourth person pays 1/4 of the bill. Choice A, 1/4, is incorrect because this is the total fraction paid by the first person. Choice B, 1/6, is incorrect as this is the fraction paid by the second person. Choice C, 1/3, is incorrect as this is the fraction paid by the third person.
2. What is the volume of a ball with a diameter of 7 inches?
- A. 165.7 in³
- B. 179.6 in³
- C. 184.5 in³
- D. 192.3 in³
Correct answer: A
Rationale: To find the volume of a sphere, the formula V = (4/3)πr³ is used, where r is the radius of the sphere. Given that the diameter of the ball is 7 inches, the radius (r) would be half of the diameter, which is 3.5 inches. Plugging this value into the formula: V = (4/3)π(3.5)³ = (4/3)π(42.875) ≈ 165.7 in³. Therefore, the correct answer is A. Choice B, C, and D are incorrect as they do not accurately represent the volume of the ball with a diameter of 7 inches.
3. What is the surface area of the cylinder shown below?
- A. 602.9 cm²
- B. 904.3 cm²
- C. 1,408.7 cm²
- D. 1,507.2 cm²
Correct answer: D
Rationale: The surface area of a cylinder can be calculated using the formula: S = 2πr² + 2πrh, where r is the radius and h is the height. Substituting the values for radius (12) and height (8) into the formula: S = 2π(12)² + 2π(12)(8). S = 2π(144) + 2π(96). S = 288π + 192π. S = 480π ≈ 1507.964. Therefore, the surface area of the cylinder is approximately 1507.2 square centimeters. Choice A, 602.9 cm², is incorrect as it is significantly lower than the correct value. Choice B, 904.3 cm², is also incorrect as it does not match the calculated surface area. Choice C, 1,408.7 cm², is incorrect as it does not align with the calculated value of the surface area.
4. As part of a study, a set of patients will be divided into three groups. 4/15 of the patients will be in Group Alpha, 2/5 in Group Beta, and 1/3 in Group Gamma. Order the groups from smallest to largest, according to the number of patients in each group.
- A. Group Alpha, Group Beta, Group Gamma
- B. Group Alpha, Group Gamma, Group Beta
- C. Group Gamma, Group Alpha, Group Beta
- D. Group Alpha, Group Beta, Group Gamma
Correct answer: B
Rationale: The correct order is Group Alpha, Group Gamma, Group Beta based on the common denominators of the fractions. To determine the order from smallest to largest, compare the fractions' numerators since the denominators are different. Group Alpha has 4/15 patients, Group Gamma has 1/3 patients, and Group Beta has 2/5 patients. Comparing the fractions' numerators, the order from smallest to largest is Group Alpha (4), Group Gamma (1), and Group Beta (2). Therefore, the correct order is Group Alpha, Group Gamma, Group Beta. Choice A is incorrect as it lists Group Beta before Group Gamma. Choice C is incorrect as it lists Group Gamma before Group Alpha. Choice D is incorrect as it lists Group Beta before Group Gamma, which is not in ascending order based on the number of patients.
5. What is the median of the set of numbers {2, 3, 9, 12, 15}?
- A. 3
- B. 9
- C. 12
- D. 15
Correct answer: B
Rationale: The median represents the middle value in an ordered set of numbers. To find the median, the numbers need to be arranged in ascending order: {2, 3, 9, 12, 15}. Since the set has an odd number of elements, the median will be the middle value, which is 9 in this case. Choice A (3) and Choice D (15) are incorrect as they do not fall in the middle of the ordered set. Choice C (12) is also incorrect as it is not the middle value in this particular set.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access