ATI TEAS 7
Math Practice TEAS Test
1. Given a double bar graph, which statement is true about the distributions of Group A and Group B?
- A. Group A is negatively skewed, Group B is normal.
- B. Group A is positively skewed, Group B is normal.
- C. Group A is positively skewed, Group B is neutral.
- D. Group A is normal, Group B is negatively skewed.
Correct answer: B
Rationale: The correct answer is B. In statistical terms, a positively skewed distribution means that the tail on the right side of the distribution is longer or fatter than the left side, indicating more high values. Therefore, Group A is positively skewed. Conversely, an approximately normal distribution, also known as a bell curve, is symmetrical with no skewness. Hence, Group B is normal. Choices A, C, and D are incorrect because they do not accurately describe the skewness of Group A and the normal distribution of Group B as depicted in a double bar graph.
2. How many feet are in 9 yards?
- A. 45 ft
- B. 18 ft
- C. 36 ft
- D. 27 ft
Correct answer: D
Rationale: To convert yards to feet, you need to know that 1 yard is equal to 3 feet. Therefore, to find out how many feet are in 9 yards, you multiply 9 by 3, which equals 27 feet. Choice A (45 ft) is incorrect as it miscalculates by multiplying 9 by 5 instead of 3. Choice B (18 ft) incorrectly multiplies 9 by 2. Choice C (36 ft) is incorrect as it doubles the answer of 18 feet, which is also an incorrect calculation.
3. Solve for x in the equation above: (x/y) - z = rw
- A. X = y(z + rw)
- B. X = rw(y - z)
- C. X = rwy + z
- D. X = rwy - z
Correct answer: A
Rationale: To solve for x, first, isolate x by moving the term involving x to one side of the equation. Begin by adding z to both sides of the equation to get (x/y) = rw + z. Then, multiply both sides by y to get x = y(rw + z), which simplifies to x = y(z + rw). Therefore, choice A is correct. Choices B, C, and D are incorrect because they do not correctly rearrange the terms in the equation to solve for x.
4. What is the probability of consecutively pulling two more orange blocks, without replacement, from a bag containing 3 orange blocks, 5 green blocks, and 4 purple blocks?
- A. 3/12
- B. 3/55
- C. 2/10
- D. 1/3
Correct answer: B
Rationale: To calculate the probability of consecutively pulling two more orange blocks without replacement, we first determine the probability of pulling an orange block on the first draw, which is 3/12 (3 orange blocks out of 12 total blocks). After removing one orange block, there are only 11 blocks left, so the probability of pulling another orange block on the second draw is 2/11. To find the combined probability, we multiply the probabilities together: (3/12) * (2/11) = 6/132 = 3/55. Therefore, the correct answer is B. Choice A (3/12) incorrectly simplifies the probability before calculating the second draw. Choice C (2/10) does not consider the specific number of orange blocks in the bag. Choice D (1/3) does not account for the reduced number of blocks after the first draw.
5. There are 800 students enrolled in four allied health programs at a local community college. The percentage of students in each program is displayed in the pie chart. What is the number of students enrolled in the respiratory care program?
- A. 336
- B. 152
- C. 144
- D. 168
Correct answer: B
Rationale: To find the number of students enrolled in the respiratory care program, you need to calculate 19% of 800. 19% of 800 is (19/100) * 800 = 152 students. Therefore, the correct answer is B. Choice A (336), Choice C (144), and Choice D (168) are incorrect as they do not represent the correct percentage of students enrolled in the respiratory care program as indicated by the pie chart.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access