jessica buys 10 cans of paint red paint costs 1 per can and blue paint costs 2 per can in total she spends 16 how many red cans did she buy
Logo

Nursing Elites

ATI TEAS 7

TEAS Math Practice Test

1. Jessica buys 10 cans of paint. Red paint costs $1 per can, and blue paint costs $2 per can. In total, she spends $16. How many red cans did she buy?

Correct answer: C

Rationale: Let r be the number of red cans and b be the number of blue cans. The total cans equation is r + b = 10. The total cost equation is r + 2b = 16. By solving these equations simultaneously, we find r = 4. Therefore, Jessica bought 4 red cans. Choice A, 2 red cans, is incorrect because it does not satisfy the total cans or total cost condition. Choices B and D are also incorrect as they do not fulfill both conditions simultaneously.

2. To begin making her soup, Jennifer added four containers of chicken broth with 1 liter of water into the pot. Each container of chicken broth contains 410 milliliters. How much liquid is in the pot?

Correct answer: B

Rationale: Each container of chicken broth contains 410 milliliters. Jennifer added four containers, which totals 4 * 410 = 1640 milliliters of chicken broth. She then added 1 liter of water, equivalent to 1000 milliliters. Combining all the liquids, we get 1640 + 1000 = 2640 milliliters, which equals 2.64 liters. Choice A is incorrect because it miscalculates the total liquid volume. Choice C is incorrect as it greatly overestimates the liquid amount. Choice D is incorrect as it also overestimates the liquid content in the pot.

3. What is the simplified form of the expression (x^2 + 2x)/(x)?

Correct answer: A

Rationale: To simplify the expression (x^2 + 2x)/(x), we factor out x from the numerator to get x(x + 2) and then cancel the x in the denominator. This simplifies to x + 2, making choice A the correct answer. Choice B (x^2 + 2) is incorrect as it does not account for the division by x. Choice C (x(x + 2)) is also incorrect as it represents the factored form before cancellation. Choice D (1 + 2/x) is incorrect as it does not simplify the expression correctly.

4. Solve the system of equations. Equation 1: 2x + y = 0 Equation 2: x - 2y = 8

Correct answer: B

Rationale: From Equation 1: 2x + y = 0. Solve for y: y = -2x. Substitute y = -2x into Equation 2: x - 2(-2x) = 8. Simplify to x + 4x = 8, then 5x = 8, and x = 8 ÷ 5 = 1.6. Substitute x = 1.6 back into y = -2x to find y = -3.2. Therefore, one solution is (1.6, -3.2). To find the second solution, use -1.6 for x to get (-1.6, 3.2). Thus, the correct answer is B, representing the solutions (1.8, -3.6) and (-1.8, 3.6). Choices A, C, and D contain incorrect values that do not match the solutions derived from solving the system of equations.

5. What is the area of a rectangle with a length of 5 cm and a width of 4 cm?

Correct answer: B

Rationale: To find the area of a rectangle, you multiply its length by its width. In this case, the length is 5 cm and the width is 4 cm. So, Area = length * width = 5 cm * 4 cm = 20 cm². Therefore, the correct answer is 20 cm². Choice A (9 cm²), Choice C (10 cm²), and Choice D (25 cm²) are incorrect as they do not result from the correct calculation of multiplying the length and width of the rectangle.

Similar Questions

What is the domain for the function f(x)=2x+5?
What is a prime number?
Which of the following describes a real-world situation that could be modeled by?
A farmer plans to install fencing around a certain field. If each side of the hexagonal field is 320 feet long, and fencing costs $1.75 per foot, how much will the farmer need to spend on fencing material to enclose the perimeter of the field?
If m represents a car’s average mileage in miles per gallon, p represents the price of gas in dollars per gallon, and d represents a distance in miles, which of the following algebraic equations represents the cost, c, of gas per mile?

Access More Features

ATI TEAS Premium Plus
$150/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses