jessica buys 10 cans of paint red paint costs 1 per can and blue paint costs 2 per can in total she spends 16 how many red cans did she buy
Logo

Nursing Elites

ATI TEAS 7

TEAS Math Practice Test

1. Jessica buys 10 cans of paint. Red paint costs $1 per can, and blue paint costs $2 per can. In total, she spends $16. How many red cans did she buy?

Correct answer: C

Rationale: Let r be the number of red cans and b be the number of blue cans. The total cans equation is r + b = 10. The total cost equation is r + 2b = 16. By solving these equations simultaneously, we find r = 4. Therefore, Jessica bought 4 red cans. Choice A, 2 red cans, is incorrect because it does not satisfy the total cans or total cost condition. Choices B and D are also incorrect as they do not fulfill both conditions simultaneously.

2. A restaurant employs servers, hosts, and managers in a ratio of 9:2:1. If there are 36 total employees, what is the number of hosts at the restaurant?

Correct answer: C

Rationale: To find the number of hosts in the restaurant, first, express the ratio algebraically as 9x + 2x + 1x = 36, where x represents the common factor. Combine like terms to get 12x = 36. Solve for x by dividing both sides by 12 to get x = 3. To find the number of hosts, multiply the coefficient of hosts (2) by x, which equals 6. Therefore, there are 6 hosts at the restaurant. Choice A, 3, is incorrect as it represents the number of servers. Choices B and D are incorrect as they do not correspond to the number of hosts based on the given ratio.

3. A consumer recently purchased a new car and paid $48,000. This amount is $2,000 less than twice what the consumer’s friend paid for their car. Which of the following is the amount that the friend paid for their car?

Correct answer: C

Rationale: To find the amount the friend paid, you can set up the equation 2x - 2000 = 48000, where x represents the amount the friend paid. Solving this equation gives x = $25,000. Therefore, the friend paid $25,000. Choice A ($23,000) is incorrect because it does not account for the $2,000 difference mentioned in the question. Choice B ($46,000) is incorrect because it is double the amount needed. Choice D ($50,000) is incorrect as it does not consider the $2,000 less mentioned in the question.

4. Solve for x: 4(2x - 6) = 10x - 6

Correct answer: C

Rationale: To solve the equation 4(2x - 6) = 10x - 6, first distribute 4 into the parentheses: 8x - 24 = 10x - 6. Next, simplify the equation by rearranging terms: 8x - 10x = -6 + 24, which gives -2x = 18. Solving for x by dividing by -2 on both sides gives x = -9. Therefore, the correct answer is x = -9. Choice A (x = 5), Choice B (x = -7), and Choice D (x = 10) are incorrect solutions obtained by errors in solving the equation.

5. Which of the following lists is in order from least to greatest? (1/7), 0.125, (6/9), 0.60

Correct answer: C

Rationale: To determine the order from least to greatest, convert all fractions to decimals and compare them. Converting the fractions: (1/7) ≈ 0.14, (6/9) ≈ 0.67. The decimals in order from least to greatest are: 0.125 < 0.14 < 0.60 < 0.67. Therefore, the correct order is 0.125, (1/7), 0.60, 6/9, making choice C the correct answer. Choice A is incorrect as it lists (1/7) before 0.125. Choice B is incorrect as it places 0.60 before (6/9). Choice D is incorrect as it lists (6/9) before 0.60.

Similar Questions

A closet is filled with red, blue, and green shirts. If 2/5 of the shirts are green and 1/3 are red, what fraction of the shirts are blue?
A soccer field is rectangular in shape and is 100 meters long and 75 meters wide. The hectare is a metric unit of area often used to measure larger areas. Given that 1 hectare = 10,000 square meters, which of the following represents the soccer field’s area in hectares?
What is a factor?
How do you find the radius of a circle when given the diameter? How do you find the radius of a circle when given the circumference?
Write 290% as a fraction.

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses