jessica buys 10 cans of paint red paint costs 1 per can and blue paint costs 2 per can in total she spends 16 how many red cans did she buy
Logo

Nursing Elites

ATI TEAS 7

TEAS Math Practice Test

1. Jessica buys 10 cans of paint. Red paint costs $1 per can, and blue paint costs $2 per can. In total, she spends $16. How many red cans did she buy?

Correct answer: C

Rationale: Let r be the number of red cans and b be the number of blue cans. The total cans equation is r + b = 10. The total cost equation is r + 2b = 16. By solving these equations simultaneously, we find r = 4. Therefore, Jessica bought 4 red cans. Choice A, 2 red cans, is incorrect because it does not satisfy the total cans or total cost condition. Choices B and D are also incorrect as they do not fulfill both conditions simultaneously.

2. Simplify the expression. Which of the following is correct? (3/2)(8/3) ÷ (5/4)

Correct answer: B

Rationale: Using PEMDAS (Parentheses, Exponents, Multiplication and Division, Addition and Subtraction): (3/2)(8/3) ÷ (5/4) = (24/6) ÷ (5/4) = (4/1) ÷ (5/4). To divide fractions, the second fraction is flipped and then multiplied by the first fraction, resulting in (4/1)(4/5) = (16/5), which simplifies to 3(1/5) or 2.

3. Complete the following equation: 2 + (2)(2) - 2 ÷ 2 = ?

Correct answer: A

Rationale: To solve the equation, follow the order of operations (PEMDAS/BODMAS): Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right). 1. Calculate inside the parentheses first: (2)(2) = 4. 2. Then, perform multiplication and division: 2 + 4 - 1 = 6 - 1 = 5. Therefore, the correct answer is 5. Choice B (3) is incorrect because multiplication is done before subtraction. Choices C (2) and D (1) are incorrect as they do not follow the correct order of operations to solve the equation.

4. Which unit of measurement is larger, inches or centimeters?

Correct answer: A

Rationale: Inches are larger than centimeters. This is because one inch is equivalent to 2.54 centimeters. Therefore, when comparing the two units, inches are greater in length than centimeters. Choice B is incorrect as centimeters are smaller than inches. Choice C is incorrect as inches and centimeters are not the same size. Choice D is incorrect as the relationship between inches and centimeters is fixed, with inches being larger in general.

5. How do you find the radius of a circle when given the diameter? How do you find the radius of a circle when given the circumference?

Correct answer: A

Rationale: The correct way to find the radius of a circle when given the diameter is by dividing the diameter by 2 to get the radius (Radius = Diameter ÷ 2). When given the circumference, you need to divide the circumference by 2π to find the radius (Radius = Circumference ÷ 2π). Choice A provides the accurate formulas for finding the radius in both scenarios. Choices B, C, and D present incorrect formulas that do not align with the correct calculations for determining the radius of a circle based on the given information.

Similar Questions

The graph below represents the amount of rainfall in a particular state by month. What is the total rainfall for the months May, June, and July?
What is the domain for the function f(x)=2x+5?
In a fraction, which number is the numerator and which is the denominator?
Elijah drove 45 miles to his job in an hour and ten minutes in the morning. On the way home in the evening, however, the traffic was much heavier, and the same trip took an hour and a half. What was his average speed in miles per hour for the round trip?
Solve for x: 2x + 6 = 14

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses