ATI TEAS 7
TEAS Math Practice Test
1. What is 1.25 as a fraction?
- A. 1 1/4
- B. 5/4
- C. 4/5
- D. 25/20
Correct answer: B
Rationale: To convert a decimal to a fraction, we note that 1.25 can be expressed as 1 + 0.25. Since 0.25 is equivalent to 25/100 or 1/4, we add 1 whole to 1/4 to get 1 1/4, which simplifies to 5/4. Therefore, 1.25 as a fraction is 5/4. Choice A (1 1/4) is the mixed number form of 5/4. Choice C (4/5) and Choice D (25/20) are incorrect fractions that do not represent 1.25.
2. What number is 20 equal to 40% of?
- A. 50
- B. 8
- C. 200
- D. 5000
Correct answer: A
Rationale: To find the number that 20 is equal to 40% of, you can set up the equation: 20 = 0.4 * x, where x is the unknown number. To solve for x, divide both sides of the equation by 0.4. This gives x = 20 / 0.4 = 50. Therefore, 20 is 40% of 50. Choice B, 8, is incorrect because 20 is not equal to 40% of 8. Choice C, 200, is incorrect because 20 is not equal to 40% of 200. Choice D, 5000, is incorrect because 20 is not equal to 40% of 5000. The correct answer is 50.
3. University X requires some of its nursing students to take an exam before being admitted into the nursing program. In this year's class, half of the nursing students were required to take the exam, and three-fifths of those who took the exam passed. If this year's class has 200 students, how many students passed the exam?
- A. 120
- B. 100
- C. 60
- D. 50
Correct answer: C
Rationale: If the incoming class has 200 students, then half of those students were required to take the exam. (200)(1/2) = 100. So 100 students took the exam, but only three-fifths of that 100 passed the exam. (100)(3/5) = 60. Therefore, 60 students passed the exam. The correct answer is 60. Choice A is incorrect as it miscalculates the number of students who passed the exam. Choice B is incorrect as it does not consider the passing rate of the exam. Choice D is incorrect as it is much lower than the correct answer.
4. While at the local ice skating rink, Cora went around the rink 27 times in total. She slipped and fell 20 of the 27 times she skated around the rink. What approximate percentage of the times around the rink did Cora not slip and fall?
- A. 37%
- B. 74%
- C. 26%
- D. 15%
Correct answer: C
Rationale: To find the approximate percentage of the times Cora did not slip and fall, subtract the times she fell (20) from the total times around the rink (27), which gives 7. Then, divide the number of times she did not slip and fall (7) by the total times around the rink (27) and multiply by 100 to get the percentage. So, 7 divided by 27 equals 0.259, which rounds to approximately 26%. Therefore, the correct answer is 26%. Choice A (37%) is incorrect because it does not reflect the calculation based on the given information. Choice B (74%) is incorrect as it is not the result of the correct calculation. Choice D (15%) is incorrect as it does not match the calculated percentage based on the scenario provided.
5. A rectangular field has an area of 1452 square feet. If the length is three times the width, what is the width of the field?
- A. 22 feet
- B. 44 feet
- C. 242 feet
- D. 1452 feet
Correct answer: A
Rationale: To find the width of the rectangular field, use the formula for the area of a rectangle: A = length × width. Given that the length is three times the width, you have A = 3w × w. Substituting the given area, 1452 = 3w^2. Solving for w, you get 484 = w^2. Taking the square root gives ±22, but since the width must be positive, the width of the field is 22 feet. Choice B, 44 feet, is incorrect because it represents the length, not the width. Choice C, 242 feet, is incorrect as it is not a factor of the area. Choice D, 1452 feet, is incorrect as it represents the total area of the field, not the width.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access