ATI TEAS 7
TEAS Math Practice Test
1. What is 1.25 as a fraction?
- A. 1 1/4
- B. 5/4
- C. 4/5
- D. 25/20
Correct answer: B
Rationale: To convert a decimal to a fraction, we note that 1.25 can be expressed as 1 + 0.25. Since 0.25 is equivalent to 25/100 or 1/4, we add 1 whole to 1/4 to get 1 1/4, which simplifies to 5/4. Therefore, 1.25 as a fraction is 5/4. Choice A (1 1/4) is the mixed number form of 5/4. Choice C (4/5) and Choice D (25/20) are incorrect fractions that do not represent 1.25.
2. A patient requires a 30% increase in the dosage of their medication. Their current dosage is 270 mg. What will their dosage be after the increase?
- A. 81 mg
- B. 270 mg
- C. 300 mg
- D. 351 mg
Correct answer: D
Rationale: To calculate the 30% increase, find 30% of 270 mg: 0.30 x 270 mg = 81 mg. Add this increase to the original dosage: 270 mg + 81 mg = 351 mg. Therefore, the patient's dosage after the 30% increase will be 351 mg. Choice A (81 mg) is incorrect as it only represents the calculated increase, not the total dosage post-increase. Choice B (270 mg) is the original dosage and does not account for the 30% increase. Choice C (300 mg) is the original dosage plus 30 mg, not the correct calculation with a 30% increase.
3. A patient requires a 30% increase in the dosage of their medication. Their current dosage is 270 mg. What will their dosage be after the increase?
- A. 81 mg
- B. 270 mg
- C. 300 mg
- D. 351 mg
Correct answer: D
Rationale: To calculate a 30% increase from the current dosage of 270 mg, first find 30% of 270, which is 81 mg. Add this 81 mg increase to the original dosage of 270 mg to get the new dosage, which is 351 mg (270 mg + 81 mg = 351 mg). Therefore, the correct answer is 351 mg. Choice A (81 mg) is incorrect because this value represents only the calculated 30% increase, not the total dosage after the increase. Choice B (270 mg) is the original dosage and does not account for the 30% increase. Choice C (300 mg) is close to the correct answer but does not consider the precise 30% increase calculation, leading to an incorrect total dosage.
4. If Stella's current weight is 56 kilograms, which of the following is her approximate weight in pounds? (Note: 1 kilogram is approximately equal to 2.2 pounds.)
- A. 123 pounds
- B. 110 pounds
- C. 156 pounds
- D. 137 pounds
Correct answer: A
Rationale: To convert Stella's weight from kilograms to pounds, you multiply her weight in kilograms (56) by the conversion factor (2.2): 56 × 2.2 = 123.2 pounds. Since we need to find the approximate weight in pounds, the closest option is 123 pounds, making choice A the correct answer. Choices B, C, and D are incorrect because they do not reflect the accurate conversion of Stella's weight from kilograms to pounds.
5. Melissa is ordering fencing to enclose a square area of 5625 square feet. How many feet of fencing does she need?
- A. 75 feet
- B. 150 feet
- C. 300 feet
- D. 5,625 feet
Correct answer: C
Rationale: To find the side length of the square, we take the square root of the area: √5625 ft² = 75 ft. The perimeter of a square is 4 times its side length, so the fencing needed is 4 × 75 ft = 300 ft. Therefore, Melissa needs 300 feet of fencing to enclose the square area of 5625 square feet. Option A (75 feet) is the side length of the square, not the fencing needed. Option B (150 feet) is half of the correct answer and does not account for all sides of the square. Option D (5,625 feet) is the total area, not the length of fencing required.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access