the length of a rectangle is 3 times its width if the width is 4 inches what is the perimeter of the rectangle
Logo

Nursing Elites

ATI TEAS 7

TEAS Math Questions

1. The length of a rectangle is 3 times its width. If the width is 4 inches, what is the perimeter of the rectangle?

Correct answer: A

Rationale: To find the perimeter of a rectangle, you add up all its sides. Given that the width is 4 inches and the length is 3 times the width (3 * 4 = 12 inches), the perimeter formula is 2 * (length + width). Substituting the values, we get 2 * (12 + 4) = 2 * 16 = 32 inches. Therefore, the correct answer is 32 inches. Choices B, C, and A are incorrect because they do not reflect the correct calculation of the rectangle's perimeter.

2. Solve for x: 3(x - 1) = 2(3x - 9)

Correct answer: D

Rationale: To solve the equation 3(x - 1) = 2(3x - 9), first distribute and simplify both sides to get 3x - 3 = 6x - 18. Next, subtract 3x from both sides to get -3 = 3x - 18. Then, add 18 to both sides to obtain 15 = 3x. Finally, divide by 3 to find x = 5. Therefore, the correct answer is x = 5. Choices A, B, and C are incorrect because they do not represent the correct solution to the given equation after proper algebraic manipulation.

3. Juan wishes to compare the percentages of time he spends on different tasks during the workday. Which of the following representations is the most appropriate choice for displaying the data?

Correct answer: D

Rationale: A pie chart is the most appropriate choice for displaying the percentages of time spent on different tasks during the workday because it visually represents parts of a whole. In this case, each task's percentage represents a part of the entire workday, making a pie chart an ideal way to compare these percentages. Line plots, bar graphs, and line graphs are not suitable for showing percentages of a whole; they are more commonly used for tracking trends, comparing values, or showing relationships between variables but do not efficiently represent parts of a whole like a pie chart does.

4. What is the result of adding 1/6 and 1/2, expressed in reduced form?

Correct answer: B

Rationale: To add 1/6 and 1/2, you need a common denominator, which is 6. So, 1/6 + 3/6 = 4/6. Simplifying 4/6 gives 2/3, which is the correct answer (1/3). Choices A, C, and D are incorrect as they do not represent the correct sum of the fractions 1/6 and 1/2.

5. You measure the width of your door to be 36 inches. The true width of the door is 75 inches. What is the relative error in your measurement?

Correct answer: A

Rationale: The relative error is calculated using the formula: (|Measured Value - True Value| / True Value) * 100%. Substituting the values given, we have (|36 - 75| / 75) * 100% = (39 / 75) * 100% ≈ 0.52 * 100% = 0.52%. Therefore, the relative error in measurement is approximately 0.52%. Choice A is correct because it reflects this calculation. Choice B is incorrect as it represents a lower relative error than the actual value obtained. Choice C is incorrect as it overestimates the relative error. Choice D is incorrect as it underestimates the relative error.

Similar Questions

Joshua needs more than 92 points to qualify for a scholarship. Each question is worth 4 points, and there are 30 questions. What inequality determines how many questions he must answer correctly?
In the problem 6 + 3 × 2, which operation should be completed first?
A rectangular solid box has a square base with a side length of 5 feet and a height of h feet. If the volume of the box is 200 cubic feet, which of the following equations can be used to find h?
If Sarah reads at an average rate of 21 pages in four nights, how long will it take her to read 140 pages?
Gordon purchased a television when his local electronics store had a sale. The television was offered at 30% off its original price of $472. What was the sale price Gordon paid?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses