ATI TEAS 7
TEAS 7 Math Practice Test
1. Simplify the following expression: 4 * (2/3) ÷ 1 * (1/6)
- A. 2
- B. 3 1/3
- C. 4
- D. 4 1/2
Correct answer: C
Rationale: To simplify the expression, first convert the mixed numbers into fractions: 4 * (2/3) ÷ 1 * (1/6). This becomes 4 * 2/3 ÷ 1 * 1/6. Next, perform the multiplication and division from left to right: 8/3 ÷ 1 * 1/6 = 8/3 * 1 * 6 = 8/3 * 6 = 16. Therefore, the correct answer is 4. Choice A (2) is incorrect as it does not represent the final simplified expression. Choice B (3 1/3) is incorrect as it does not match the result of simplifying the expression. Choice D (4 1/2) is incorrect as it does not match the result of simplifying the expression.
2. The total perimeter of a rectangle is 36 cm. If the length of each side is 12 cm, what is the width?
- A. 3 cm
- B. 12 cm
- C. 6 cm
- D. 8 cm
Correct answer: C
Rationale: The formula for the perimeter of a rectangle is P = 2(l + w), where P is the perimeter, l is the length, and w is the width. Given that the total perimeter is 36 cm and each side's length is 12 cm, we substitute the values into the formula: 36 = 2(12 + w). Solving for w gives us w = 6. Therefore, the width of the rectangle is 6 cm. Choice A (3 cm) is incorrect because the width is not half of the length. Choice B (12 cm) is the length, not the width. Choice D (8 cm) is incorrect as it does not match the calculated width of 6 cm.
3. Which of the following lists is in order from least to greatest? 2−1 , −(4/3), (−1)3 , (2/5)
- A. 2−1 , −(4/3), (−1)3 , (2/5)
- B. −(4/3), (−1)3 , 2−1 , (2/5)
- C. −(4/3), (2/5), 2−1 , (−1)3
- D. −(4/3), (−1)3 , (2/5), 2−1
Correct answer: D
Rationale: To determine the correct order from least to greatest, start by simplifying the expressions. 2^(-1) = 1/2 and (-1)^3 = -1. Now, comparing the values, (-4/3) is the most negative, followed by -1, then (2/5), and finally 1/2. Therefore, the correct order is (-4/3), (-1)^3, (2/5), 2^(-1), making choice D the correct answer. Choices A, B, and C are incorrect because they do not follow the correct order from least to greatest as determined by comparing the values of the expressions after simplification.
4. A sandwich shop earns $4 for every sandwich (s) it sells, $2 for every drink (d), and $1 for every cookie (c). If this is all the shop sells, which of the following equations represents what the shop’s revenue (r) is over three days?
- A. r = 4s + 2d + 1c
- B. r = 8s + 4d + 2c
- C. r = 12s + 6d + 3c
- D. r = 16s + 8d + 4c
Correct answer: A
Rationale: Let s be the number of sandwiches sold. Each sandwich earns $4, so selling s sandwiches at $4 each results in revenue of $4s. Similarly, d drinks at $2 each give $2d of income, and cookies bring in $1c. Summing these values gives total revenue = 4s + 2d + 1c. Therefore, option A, r = 4s + 2d + 1c, correctly represents the shop's revenue. Choices B, C, and D are incorrect because they incorrectly multiply the prices of each item by more than one day's sales, which would overstate the total revenue for a three-day period.
5. Jonathan pays a $65 monthly flat rate for his cell phone. He is charged $0.12 per minute for each minute used in a roaming area. Which of the following expressions represents his monthly bill for x roaming minutes?
- A. 65 + 0.12x
- B. 65x + 0.12
- C. 65.12x
- D. 65 + 0.12x
Correct answer: A
Rationale: The correct expression for Jonathan's monthly bill is 65 + 0.12x, where x represents the number of roaming minutes. The $65 monthly flat rate is added to the product of $0.12 per minute and the number of roaming minutes (x). Choice B is incorrect because it incorrectly multiplies the flat rate by x and adds the per-minute charge. Choice C is incorrect as it combines the flat rate and the per-minute charge into a single value. Choice D is incorrect as it incorrectly multiplies the flat rate by x and adds the per-minute charge separately.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access