simplify the following expression 4 23 1 16
Logo

Nursing Elites

ATI TEAS 7

TEAS 7 Math Practice Test

1. Simplify the following expression: 4 * (2/3) ÷ 1 * (1/6)

Correct answer: C

Rationale: To simplify the expression, first convert the mixed numbers into fractions: 4 * (2/3) ÷ 1 * (1/6). This becomes 4 * 2/3 ÷ 1 * 1/6. Next, perform the multiplication and division from left to right: 8/3 ÷ 1 * 1/6 = 8/3 * 1 * 6 = 8/3 * 6 = 16. Therefore, the correct answer is 4. Choice A (2) is incorrect as it does not represent the final simplified expression. Choice B (3 1/3) is incorrect as it does not match the result of simplifying the expression. Choice D (4 1/2) is incorrect as it does not match the result of simplifying the expression.

2. Solve the equation for the unknown. 3x + 2 = 20

Correct answer: C

Rationale: Simplify the equation step by step: Subtract 2 from both sides: 3x + 2 - 2 = 20 - 2 3x = 18 Divide both sides by 3: x = 18 ÷ 3 x = 6 Therefore, the correct answer is C (x = 6).

3. What is a direct proportion? What is an inverse proportion?

Correct answer: A

Rationale: In a direct proportion, both quantities increase or decrease together. This means that as one quantity goes up, the other also goes up, and vice versa. On the other hand, in an inverse proportion, when one quantity increases, the other decreases by the same factor. Therefore, choice A is correct as it accurately defines direct and inverse proportions. Choices B, C, and D are incorrect because they do not accurately describe the relationship between quantities in direct and inverse proportions.

4. The force applied is directly proportional to the stretch of a coil. If a force of 132 Newtons stretches a coil 0.07 meters, what force would be needed to stretch a coil 0.1 meter? Round your answer to the nearest tenth.

Correct answer: C

Rationale: To find the force needed to stretch the coil 0.1 meters, we can set up a proportion based on the given information. The initial force and stretch are in direct proportion, so we can use this relationship to determine the unknown force. (132 N / 0.07 m) = X / 0.1 m. Cross-multiplying, we get 132 N * 0.1 m / 0.07 m = 188.57 N, which rounds to 188.6 N. Therefore, the correct answer is 188.6 Newtons. Choice A is incorrect as it does not match the calculated answer. Choice B is significantly higher and does not align with the proportional relationship. Choice D is close but does not account for the correct rounding as specified in the question.

5. Curtis measured the temperature of water in a flask in his science class. The temperature of the water was 35 °C. He carefully heated the flask so that the temperature of the water increased by about 2 °C every 3 minutes. Approximately how much had the temperature of the water increased after 20 minutes?

Correct answer: B

Rationale: To find the increase in temperature after 20 minutes, calculate how many 3-minute intervals are in 20 minutes (20 ÷ 3 = 6.66, rounding to 7 intervals). Then, multiply the temperature increase per interval (2 °C) by the number of intervals (7 intervals), giving a total increase of 14 °C. Therefore, after 20 minutes, the temperature of the water would have increased by approximately 14 °C. Choice A, 10 °C, is incorrect as it underestimates the total increase. Choice C, 15 °C, is incorrect as it overestimates the total increase. Choice D, 35 °C, is incorrect as it represents the initial temperature of the water, not the increase in temperature.

Similar Questions

What is the percentage equivalent of 0.0016?
Approximately what percentage more staff members at Hospital Y are female than at Hospital X?
Out of 9 trips, a person chooses the longest route for 3 of them. What percentage of their trips is the longest route?
Which of the following expressions represents the sum of three times a number and eight times a different number?
In a study where 60% of respondents use smartphones to check their email, and 5,000 respondents were included, how many respondents use smartphones for email?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$1/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses