ATI TEAS 7
TEAS Practice Test Math
1. Based on their prescribing habits, a set of doctors was divided into three groups: 1/4 of the doctors were placed in Group X because they always prescribed medication. 1/3 of the doctors were placed in Group Y because they never prescribed medication. 1/6 of the doctors were placed in Group Z because they sometimes prescribed medication. Order the groups from largest to smallest, according to the number of doctors in each group.
- A. Group X, Group Y, Group Z
- B. Group Z, Group Y, Group X
- C. Group Z, Group X, Group Y
- D. Group Y, Group X, Group Z
Correct answer: D
Rationale: Compare and order the groups based on the fractions provided.
2. After a hurricane, donations were collected and divided into various categories. If 23% of the funds went towards construction costs, what is the percentage donated to support construction?
- A. 0.49
- B. 0.23
- C. 0.18
- D. 0.1
Correct answer: B
Rationale: The correct answer is B (0.23). To find the percentage of funds donated for construction costs, we need to consider the given percentage, which is 23%. In decimal form, 23% is represented as 0.23. Choices A, C, and D are incorrect because they do not match the correct decimal equivalent of 23%, which is 0.23. It's essential to convert percentages to decimal form accurately to calculate the correct percentage of funds allocated for a specific purpose.
3. Which of the following describes a real-world situation that could be modeled by?
- A. Courtney charges a $12 fee plus $2 per hour to babysit. Kendra charges a $10 fee plus $5 per hour. Write an equation to find the number of hours for which the two charges are equal.
- B. Courtney charges a $2 fee plus $12 per hour to babysit. Kendra charges a $5 fee plus $10 per hour. Write an equation to find the number of hours for which the two charges are equal.
- C. Courtney charges a $12 fee plus $2 to babysit. Kendra charges a $10 fee plus $5 to babysit. Write an equation to find the number of hours for which the two charges are equal.
- D. Courtney charges $10 plus $2 per hour to babysit. Kendra charges $12 plus $5 per hour. Write an equation to find the number of hours for which the two charges are equal.
Correct answer: A
Rationale: In the given situation, Courtney charges a $12 fee plus $2 per hour to babysit, represented by the equation: 12 + 2h where h is the number of hours. Kendra charges a $10 fee plus $5 per hour, represented by the equation: 10 + 5h. To find the number of hours for which the two charges are equal, we set the two equations equal to each other: 12 + 2h = 10 + 5h. Solving for h gives h = 2. This means that the charges are equal after 2 hours of babysitting. Choice B is incorrect because the fee and hourly rates for Courtney and Kendra are reversed, leading to an incorrect equation. Choices C and D are incorrect as they do not accurately represent the given scenario of fees and hourly rates for babysitting by Courtney and Kendra.
4. Simplify the following expression: 5/9 × 15/36
- A. 5/36
- B. 8/27
- C. 10/17
- D. 15/27
Correct answer: A
Rationale: To simplify the given expression, multiply the numerators together and the denominators together. 5/9 × 15/36 = (5 × 15) / (9 × 36) = 75 / 324. Now, simplify the resulting fraction by finding the greatest common divisor (GCD) of 75 and 324, which is 3. Divide both the numerator and denominator by 3 to get the simplified fraction: 75 ÷ 3 / 324 ÷ 3 = 25 / 108. Therefore, the simplified form of 5/9 × 15/36 is 25/108, which is equivalent to 5/36. Choice A, 5/36, is the correct answer. Choice B, 8/27, is incorrect as it does not match the simplified form of the expression. Choice C, 10/17, is unrelated and does not result from the given multiplication. Choice D, 15/27, does not correspond to the simplification of the given expression.
5. Cora skated around the rink 27 times but fell 20 times. What percentage of the time did she not fall?
- A. 0.37
- B. 0.74
- C. 0.26
- D. 0.15
Correct answer: C
Rationale: To find the percentage of the time Cora did not fall, subtract the number of times she fell (20) from the total number of times she skated around the rink (27). This gives us 27 - 20 = 7 times she did not fall. To express this as a percentage, calculate (7/27) * 100% = 25.93%, which is approximately 26%. Therefore, the correct answer is 0.26 (C). Choice A (0.37), Choice B (0.74), and Choice D (0.15) are incorrect as they do not represent the percentage of the time Cora did not fall based on the information provided.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access