ATI TEAS 7
Practice Math TEAS TEST
1. As the number of credit hours a student takes in a semester increases, the amount of tuition, the amount of access fees, and the number of student loans available also increase. Which of the following is the independent variable?
- A. Amount of tuition
- B. Number of credit hours
- C. Amount of access fees
- D. Number of student loans
Correct answer: B
Rationale: The correct answer is the number of credit hours. In this scenario, the number of credit hours is the independent variable because it is the factor that is intentionally changed or manipulated. The amount of tuition, access fees, and student loans are dependent variables as they are influenced by the number of credit hours a student takes. The number of credit hours drives the changes in the other factors, making it the independent variable.
2. The phone bill is calculated each month using the equation y = 50x. The cost of the phone bill per month is represented by y and x represents the gigabytes of data used that month. What is the value and interpretation of the slope of this equation?
- A. 75 dollars per day
- B. 75 gigabytes per day
- C. 50 dollars per day
- D. 50 dollars per gigabyte
Correct answer: D
Rationale: The slope of the equation y = 50x is 50, which means that for each additional gigabyte of data used, the cost increases by 50 dollars. Therefore, the interpretation of the slope is that it represents the cost per gigabyte, making '50 dollars per gigabyte' the correct answer. Choices A, B, and C are incorrect because they do not reflect the relationship between the cost and the amount of data used in the given equation.
3. Which of the following is the greatest value?
- A. 43 ÷ 55
- B. 7 ÷ 5
- C. 0.729
- D. 73%
Correct answer: B
Rationale: To determine the greatest value among the choices, you need to convert all options to a common format. In this case, converting fractions to decimals will help compare them. When 7 ÷ 5 is calculated, it equals 1.4, which is greater than 0.729 (choice C) and 0.78 (choice A when rounded). The percentage 73% (choice D) is equivalent to 0.73, making 7 ÷ 5 the largest value. Therefore, the correct answer is B. Choice A is smaller than B, as 43 ÷ 55 equals approximately 0.78. Choice C is smaller than B, as 0.729 is less than 1.4. Choice D is smaller than B, as 73% is equal to 0.73, which is less than 1.4.
4. A can has a radius of 1.5 inches and a height of 3 inches. Which of the following best represents the volume of the can?
- A. 17.2 in³
- B. 19.4 in³
- C. 21.2 in³
- D. 23.4 in³
Correct answer: C
Rationale: The volume of a cylinder is calculated using the formula V = πr²h, where r is the radius and h is the height. Substituting the given values (r = 1.5 inches, h = 3 inches) into the formula yields V ≈ 21.2 in³. Therefore, the correct answer is C. Choice A, 17.2 in³, is incorrect as it does not correspond to the correct calculation. Choice B, 19.4 in³, is also incorrect and does not match the calculated volume. Choice D, 23.4 in³, is not the correct volume obtained when using the provided dimensions in the formula for the volume of a cylinder.
5. Sally wants to buy a used truck for her delivery business. Truck A is priced at $450 and gets 25 miles per gallon. Truck B costs $650 and gets 35 miles per gallon. If gasoline costs $4 per gallon, how many miles must Sally drive to make truck B the better buy?
- A. 500
- B. 7500
- C. 1750
- D. 4375
Correct answer: D
Rationale: To determine the breakeven point where Truck B becomes the better buy, we need to compare the total costs for both trucks. For Truck A: Total cost = $450 + (miles / 25) * $4. For Truck B: Total cost = $650 + (miles / 35) * $4. To find the point where Truck B is the better buy, set the two total cost equations equal to each other and solve for miles. By solving this equation, we find that Sally must drive 4375 miles for Truck B to be the better buy. Choice A (500) is too low, Choice B (7500) is too high, and Choice C (1750) does not represent the breakeven point where Truck B becomes more cost-effective.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access