ATI TEAS 7
TEAS Practice Math Test
1. Jeremy put a heavy chalk mark on the tire of his bicycle. His bike tire is 27 inches in diameter. When he rolled the bike, the chalk left marks on the sidewalk. Which expression can be used to best determine the distance, in inches, the bike rolled from the first mark to the fourth mark?
- A. 3(27π)
- B. 4π(27)
- C. (27 ÷ 3)π
- D. (27 ÷ 4)π
Correct answer: A
Rationale: The distance traveled by the bike in one complete roll of the tire is equal to the circumference, which can be calculated using the formula C = πd, where d is the diameter. Given that the diameter of the bike tire is 27 inches, the circumference is obtained by multiplying the diameter by π. As the tire rolls from the first mark to the fourth mark, it completes three full rotations (one complete roll plus two more). Therefore, the total distance rolled is 3 times the circumference, which results in 3(27π). Choice A is correct. Choice B is incorrect as it incorrectly multiplies the diameter by 4π instead of multiplying the circumference by 4. Choices C and D are incorrect as they involve dividing the diameter by a number, which is not applicable in this context.
2. A rectangular solid box has a square base with a side length of 5 feet and a height of h feet. If the volume of the box is 200 cubic feet, which of the following equations can be used to find h?
- A. 5h = 200
- B. 5h² = 200
- C. 25h = 200
- D. h = 200 ÷ 5
Correct answer: C
Rationale: The volume formula for a rectangular solid is V = l × w × h. In this case, the length and width are both 5 feet. Substituting the values into the formula gives V = 5 × 5 × h = 25h = 200. Therefore, h = 200 ÷ 25 = 8. Option A is incorrect because the product of length, width, and height is not directly equal to the volume. Option B is incorrect as squaring the height is not part of the volume formula. Option D is incorrect as it oversimplifies the relationship between height and volume, not considering the base dimensions.
3. When rounding 245.2678 to the nearest thousandth, which place value would be used to decide whether to round up or round down?
- A. Ten-thousandths
- B. Thousandths
- C. Hundredths
- D. Thousand
Correct answer: A
Rationale: When rounding a number to the nearest thousandth, you look at the digit in the ten-thousandths place to determine whether to round up or down the digit in the thousandths place. In this case, rounding 245.2678 to the nearest thousandth, the digit in the ten-thousandths place is 6, which is greater than or equal to 5, so you would round up the digit in the thousandths place. Therefore, the correct answer is the ten-thousandths place. Choices B, C, and D are incorrect because they do not directly influence the rounding of the thousandths place in this scenario.
4. Which of the following is the correct simplification of the expression below? 12 ÷ 3 × 4 - 1 + 23
- A. 6
- B. 21
- C. 38
- D. 23
Correct answer: C
Rationale: The correct order of operations dictates solving division and multiplication before addition and subtraction. Therefore, following the order: (12 ÷ 3) × 4 - 1 + 23 = 4 × 4 - 1 + 23 = 16 - 1 + 23 = 38. Choice A (6) results from adding and subtracting before division and multiplication. Choice B (21) results from incorrect placement of parentheses. Choice D (23) is the last number in the expression and does not reflect the cumulative result of the operations.
5. What is 2.7834 rounded to the nearest tenth?
- A. 2.7
- B. 2.78
- C. 2.8
- D. 2.88
Correct answer: C
Rationale: To round 2.7834 to the nearest tenth, we look at the digit in the hundredths place, which is 8. Since 8 is greater than or equal to 5, the digit in the tenths place is rounded up. Therefore, 2.7834 rounded to the nearest tenth is 2.8. Choice A (2.7) is incorrect because rounding down would require the digit in the hundredths place to be less than 5. Choice B (2.78) is incorrect because rounding to the nearest tenth involves considering the digit in the hundredths place. Choice D (2.88) is incorrect as it goes beyond rounding to just the nearest tenth.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access