ATI TEAS 7
TEAS Exam Math Practice
1. A woman’s dinner bill comes to $48.30. If she adds a 20% tip, which of the following will be her total bill?
- A. $9.66
- B. $38.64
- C. $48.30
- D. $57.96
Correct answer: D
Rationale: To calculate the total bill after adding a 20% tip, you need to find 120% of the original bill. This is because adding a 20% tip means paying 120% of the bill. So, $48.30 × 120/100 = $57.96. Therefore, the correct answer is $57.96. Choice A ($9.66) is incorrect as it represents only the 20% tip amount. Choice B ($38.64) is incorrect as it is the original bill amount without the tip. Choice C ($48.30) is incorrect as it is the original bill amount and does not include the additional 20% tip.
2. Given that three vertices of a parallelogram are (1, 2), (3, 4), and (5, 6), what are the coordinates of the fourth vertex?
- A. (1, 6)
- B. (3, 2)
- C. (5, 2)
- D. (7, 8)
Correct answer: D
Rationale: To find the fourth vertex of a parallelogram, we can use the properties of a parallelogram. Opposite sides of a parallelogram are parallel and equal in length. Therefore, we can determine the fourth vertex by extending the line formed by the first two points. If we extend the line from (1, 2) to (3, 4), we find that it has a slope of 1. This means that extending the line from (3, 4) by the same slope will give us the fourth vertex. By adding 2 units to both x and y coordinates of (5, 6), we get (7, 8) as the coordinates of the fourth vertex. Therefore, the correct answer is (7, 8). Choices A, B, and C are incorrect as they do not satisfy the properties of a parallelogram and the given coordinate points.
3. In Mrs. McConnell's classroom, there are 14 students with brown eyes and 2 students with green eyes. What is the ratio of students with brown eyes to students with green eyes?
- A. 7:1
- B. 7:2
- C. 14:2
- D. 14:1
Correct answer: A
Rationale: The correct answer is A: 7:1. To find the ratio, divide the number of students with brown eyes (14) by the number of students with green eyes (2), which equals 7. Therefore, the ratio of students with brown eyes to students with green eyes is 7:1. Choice B (7:2) is incorrect as it does not accurately represent the ratio of students with brown eyes to green eyes. Choice C (14:2) is incorrect because the ratio should be simplified, and 14:2 simplifies to 7:1. Choice D (14:1) is incorrect as it does not consider the number of students with green eyes.
4. A patient requires a 30% increase in the dosage of their medication. Their current dosage is 270 mg. What will their dosage be after the increase?
- A. 81 mg
- B. 270 mg
- C. 300 mg
- D. 351 mg
Correct answer: D
Rationale: To calculate the 30% increase, find 30% of 270 mg: 0.30 x 270 mg = 81 mg. Add this increase to the original dosage: 270 mg + 81 mg = 351 mg. Therefore, the patient's dosage after the 30% increase will be 351 mg. Choice A (81 mg) is incorrect as it only represents the calculated increase, not the total dosage post-increase. Choice B (270 mg) is the original dosage and does not account for the 30% increase. Choice C (300 mg) is the original dosage plus 30 mg, not the correct calculation with a 30% increase.
5. Which statement best describes the rate of change?
- A. Every day, the snow melts 10 centimeters.
- B. Every day, the snow melts 5 centimeters.
- C. Every day, the snow increases by 10 centimeters.
- D. Every day, the snow increases by 5 centimeters.
Correct answer: B
Rationale: The rate of change refers to how one quantity changes concerning another quantity. In this scenario, the rate of change is the amount of snow melting per day, which is 5 centimeters. This is determined by the slope of the graph, indicating a decrease in snow depth. Choices C and D incorrectly describe an increase in snow depth, while choice A exaggerates the rate of snow melting compared to the actual value of 5 centimeters per day.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access