a mathematics test has a 42 ratio of data analysis problems to algebra problems if the test has 18 algebra problems how many data analysis problems ar
Logo

Nursing Elites

ATI TEAS 7

ATI TEAS Math Practice Test

1. A mathematics test has a 4:2 ratio of data analysis problems to algebra problems. If the test has 18 algebra problems, how many data analysis problems are on the test?

Correct answer: C

Rationale: The ratio of 4:2 simplifies to 2:1. This means that for every 2 algebra problems, there is 1 data analysis problem. If there are 18 algebra problems, we can set up a proportion: 2 algebra problems correspond to 1 data analysis problem. Therefore, 18 algebra problems correspond to x data analysis problems. Solving the proportion, x = 18 * 1 / 2 = 9. Hence, there are 9 data analysis problems on the test. Therefore, the total number of data analysis problems on the test is 18 (algebra problems) + 9 (data analysis problems) = 27.

2. When rounding 2678 to the nearest thousandth, which place value would be used to decide whether to round up or round down?

Correct answer: B

Rationale: When rounding 2678 to the nearest thousandth, you would look at the digit in the thousandth place, which is 7. To decide whether to round up or down, you consider the digit to the immediate right of the place you are rounding to. Since 7 is equal to or greater than 5, you round up. Choice A, ten-thousandth, is incorrect as we are rounding to the thousandth place. Choice C, hundredth, is not relevant as we are not rounding to that place value. Choice D, thousand, is incorrect as it is the original number being rounded, not the place value used for rounding.

3. What is the median of the set of numbers {2, 3, 9, 12, 15}?

Correct answer: B

Rationale: The median represents the middle value in an ordered set of numbers. To find the median, the numbers need to be arranged in ascending order: {2, 3, 9, 12, 15}. Since the set has an odd number of elements, the median will be the middle value, which is 9 in this case. Choice A (3) and Choice D (15) are incorrect as they do not fall in the middle of the ordered set. Choice C (12) is also incorrect as it is not the middle value in this particular set.

4. Simplify the following expression: (1/4) × (3/5) ÷ 1 (1/8)

Correct answer: C

Rationale: First, convert the mixed number 1 (1/8) into an improper fraction: 1 (1/8) = 9/8. Now, simplify the expression: (1/4) × (3/5) ÷ (9/8). To divide by a fraction, multiply by its reciprocal: (1/4) × (3/5) × (8/9) = 24/180 = 2/15. Thus, the simplified expression is 2/15. Choice A (8/15) is incorrect because the correct answer is 2/15. Choice B (27/160) is incorrect as it is not the result of the given expression. Choice D (27/40) is incorrect as it does not match the simplified expression obtained.

5. Which of the following percentages is equivalent to the fraction 3/4?

Correct answer: D

Rationale: To convert a fraction to a percentage, you multiply the fraction by 100. In this case, 3/4 * 100% = 75%. Therefore, the correct answer is D. Choice A (57%) is incorrect as it does not represent the fraction 3/4. Choice B (7.50%) is incorrect as it is not the equivalent percentage of 3/4. Choice C (65%) is incorrect as it does not match the percentage value of 3/4.

Similar Questions

What is the equivalent weight in pounds for 45 kg? (1 kg = 2.2 lbs)
Which of the following is the greatest value?
How many feet are in 9 yards?
A recipe calls for 5.5 teaspoons of vanilla. 1 teaspoon equals approximately 4.93 mL. Which of the following is the correct amount of vanilla in mL?
What is the perimeter of a square with a side length of 6 cm?

Access More Features

ATI TEAS Premium Plus
$150/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses