ATI TEAS 7
TEAS 7 Math Practice Test
1. Veronica decided to celebrate her promotion by purchasing a new car. The base price for the car was $40,210. She paid an additional $3,015 for a surround sound system and $5,218 for a maintenance package. What was the total price of Veronica's new car?
- A. $50,210
- B. $48,443
- C. $43,225
- D. $40,210
Correct answer: B
Rationale: To find the total cost of Veronica's new car, you need to sum up all her expenses. So, $40,210 (base price) + $3,015 (surround sound system) + $5,218 (maintenance package) = $48,443. Therefore, the correct answer is $48,443. Choice A ($50,210) is incorrect as it incorrectly adds the base price to the other costs. Choice C ($43,225) is incorrect as it only includes the base price and the maintenance package, omitting the cost of the surround sound system. Choice D ($40,210) is incorrect as it only includes the base price of the car and not the additional costs for the surround sound system and maintenance package.
2. A commuter survey counts the people riding in cars on a highway in the morning. Each car contains only one man, only one woman, or both one man and one woman. Out of 25 cars, 13 contain a woman and 20 contain a man. How many contain both a man and a woman?
- A. 4
- B. 7
- C. 8
- D. 13
Correct answer: C
Rationale: Let's denote the number of cars containing only a man as M, only a woman as W, and both a man and a woman as B. Given that there are 25 cars in total, we have: M + W + B = 25 From the information provided, we know that 13 cars contain a woman (W) and 20 cars contain a man (M). Since each car contains either one man, one woman, or both, the cars that contain both a man and a woman (B) are counted once in each of the M and W categories. Therefore, to find out how many cars contain both a man and a woman, we need to subtract the number of cars that contain only a man and only a woman from the total cars. M + B = 20 (as 20 cars contain a man) W + B = 13 (as 13 cars contain a woman) Solving the above two equations simultaneously, we get: M = 12, W = 5, B = 8 Therefore, 8 cars contain both a man and a woman. Hence, the correct answer is 8. Choice A, B, and D are incorrect as they do not reflect the correct calculation based on the information provided.
3. Based on a favorable performance review at work, Matt receives a 3/20 increase in his hourly wage. If his original hourly wage is represented by w, which of the following represents his new wage?
- A. 0.15w
- B. 0.85w
- C. 1.12w
- D. 1.15w
Correct answer: D
Rationale: To calculate Matt's new wage after a 3/20 increase, we need to add this percentage increase to his original wage. The increase in decimal form is 3/20 = 0.15. Therefore, the new wage is w + w(0.15) = w(1 + 0.15) = 1.15w. This means the correct answer is D. Choices A, B, and C are incorrect because they do not account for the full 3/20 increase in the wage. Choice A (0.15w) represents only the increase percentage, not the total new wage. Choice B (0.85w) and Choice C (1.12w) do not accurately calculate the new wage after the increase, leading to incorrect representations of the final wage.
4. What is the value of b in this equation? 5b - 4 = 2b + 17
- A. 13
- B. 24
- C. 7
- D. 21
Correct answer: C
Rationale: To find the value of b in the equation 5b - 4 = 2b + 17, you need to first simplify the equation. By subtracting 2b from both sides of the equation and adding 4 to both sides, you get 3b = 21. Then, dividing both sides of the equation by 3 gives you b = 7. Therefore, the value of b is 7, which corresponds to option C. Choice A (13) is incorrect as it does not match the correct calculation. Choice B (24) is incorrect as it is not the result of the correct algebraic manipulation. Choice D (21) is incorrect as it is not the value of b obtained after solving the equation step by step.
5. After taxes, a worker earned $15,036 in 7 months. What is the amount the worker earned in 2 months?
- A. $2,148
- B. $4,296
- C. $6,444
- D. $8,592
Correct answer: B
Rationale: To find the amount earned in 2 months, set up a proportion using two ratios relating amount earned to months: (15,036/7) = (x /2). Cross-multiply and solve for x: 7x = 30,072, x = 4,296. Therefore, the worker earned $4,296 in 2 months. Choice A, $2,148, is incorrect as it is half of the correct answer. Choices C and D, $6,444 and $8,592, are incorrect as they do not correspond to the calculated proportion.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access