ATI TEAS 7
TEAS Math Questions
1. A container holds 10 liters of water. If 25% of the water is used, how many liters are left?
- A. 7.5 liters
- B. 8 liters
- C. 6.5 liters
- D. 8.5 liters
Correct answer: A
Rationale: To find the amount of water left after 25% is used, you need to calculate 75% of the total water. 75% of 10 liters is 7.5 liters, which means that 7.5 liters of water are left. Therefore, the correct answer is A. Choice B (8 liters) is incorrect because this would be the total water remaining if 20% was used, not 25%. Choice C (6.5 liters) is incorrect as it does not account for the correct percentage of water left. Choice D (8.5 liters) is incorrect as it miscalculates the amount of water remaining after 25% is used.
2. What is the formula for the area of a circle?
- A. A = πr²
- B. A = 2πr
- C. A = πd
- D. A = 2πd
Correct answer: A
Rationale: The correct formula for the area of a circle is A = πr², where π is a mathematical constant approximately equal to 3.14159 and r is the radius of the circle. Choice B, A = 2πr, represents the circumference of a circle, not the area. Choice C, A = πd, incorrectly uses the diameter (d) instead of the radius in the formula for area. Choice D, A = 2πd, is also related to the circumference of the circle, not the area. Therefore, option A is the only correct formula for calculating the area of a circle.
3. Two boxes are stacked, one measuring 4 inches tall and the other 6 inches tall. What is the total height of the stacked boxes?
- A. 10 inches
- B. 12 inches
- C. 8 inches
- D. 9 inches
Correct answer: A
Rationale: To find the total height of the stacked boxes, you need to add the height of each box together. Therefore, 4 inches (height of the first box) + 6 inches (height of the second box) = 10 inches, which is the total height of the stacked boxes. Choice B (12 inches) is incorrect because it adds the heights incorrectly. Choice C (8 inches) is incorrect as it does not consider both box heights. Choice D (9 inches) is incorrect as it also does not add the heights accurately.
4. Half of a circular garden with a radius of 11.5 feet needs weeding. Find the area in square feet that needs weeding. Round to the nearest hundredth. Use 3.14 for π.
- A. 207.64
- B. 415.27
- C. 519.08
- D. 726.73
Correct answer: B
Rationale: The area of a circle is given by the formula A = π × r², where r is the radius. Since only half of the garden needs weeding, we calculate half the area. Using the given value of π (3.14) and a radius of 11.5 feet: A = 0.5 × 3.14 × (11.5)² A = 0.5 × 3.14 × 132.25 A = 0.5 × 415.27 A = 207.64 square feet. Thus, the area that needs weeding is approximately 207.64 square feet, making option B the correct answer. Choice A (207.64) is incorrect as it represents the total area of the circular garden, not just half of it. Choice C (519.08) and Choice D (726.73) are also incorrect as they do not reflect the correct calculation for finding the area of half the circular garden.
5. What defines a proper fraction versus an improper fraction?
- A. Proper: numerator < denominator; Improper: numerator > denominator
- B. Proper: numerator > denominator; Improper: numerator < denominator
- C. Proper: numerator = denominator; Improper: numerator < denominator
- D. Proper: numerator < denominator; Improper: numerator = denominator
Correct answer: A
Rationale: A proper fraction is characterized by having a numerator smaller than the denominator, while an improper fraction has a numerator larger than the denominator. Therefore, choice A is correct. Choice B is incorrect because it states the opposite relationship between the numerator and denominator for proper and improper fractions. Choice C is incorrect as it describes a fraction where the numerator is equal to the denominator, which is a different concept. Choice D is incorrect as it associates a numerator being smaller than the denominator with an improper fraction, which is inaccurate.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access