ATI TEAS 7
TEAS Math Practice Test
1. Your measurement of the width of a door is 36 inches. The actual width of the door is 35.75 inches. What is the relative error in your measurement?
- A. 0.70%
- B. 0.01%
- C. 0.99%
- D. 0.10%
Correct answer: A
Rationale: To calculate relative error, you use the formula: (|measured value - actual value| / actual value) * 100%. Substituting the values, we get (|36 - 35.75| / 35.75) * 100% = (0.25 / 35.75) * 100% = 0.7%. This means your measurement is off by 0.7% from the actual width of the door. Choice B, 0.01%, is too small as it doesn't reflect the actual difference. Choices C and D are significantly different from the calculated answer and do not represent the accurate relative error in the measurement.
2. What is the number of students who said their favorite color is blue if 35% of 100 students chose blue as their favorite color?
- A. 35
- B. 25
- C. 20
- D. 10
Correct answer: A
Rationale: To find the number of students who said their favorite color is blue, we calculate 35% of 100, which is (35/100) * 100 = 35. Therefore, 35 students said their favorite color is blue. Choice B is incorrect because it represents the percentage of students who chose red. Choice C is incorrect as it represents the percentage of students who chose green. Choice D is incorrect as it represents the percentage of students who chose yellow.
3. What is the sum of two odd numbers, two even numbers, and an odd number and an even number?
- A. Odd + Odd = Even; Even + Even = Even; Odd + Even = Odd
- B. Odd + Odd = Odd; Even + Even = Even; Odd + Even = Even
- C. Odd + Odd = Even; Even + Even = Odd; Odd + Even = Even
- D. Odd + Odd = Odd; Even + Even = Odd; Odd + Even = Even
Correct answer: A
Rationale: The sum of two odd numbers is even because odd numbers have a difference of 1 and adding them results in a multiple of 2. The sum of two even numbers is even because even numbers are multiples of 2. When an odd number and an even number are added, the result is odd because the even number contributes an extra 1 to the sum, making it an odd number. Therefore, the correct answer is A. Choices B, C, and D have incorrect combinations of the sum of odd and even numbers.
4. Apply the polynomial identity to rewrite (a + b)².
- A. a² + b²
- B. 2ab
- C. a² + 2ab + b²
- D. a² - 2ab + b²
Correct answer: C
Rationale: When you see something like (a + b)², it means you're multiplying (a + b) by itself: (a + b)² = (a + b) × (a + b) To expand this, we use the distributive property (which says you multiply each term in the first bracket by each term in the second bracket): Multiply the first term in the first bracket (a) by both terms in the second bracket: a × a = a² a × b = ab Multiply the second term in the first bracket (b) by both terms in the second bracket: b × a = ab b × b = b² Now, add up all the results from the multiplication: a² + ab + ab + b² Since ab + ab is the same as 2ab, we can simplify it to: a² + 2ab + b² So, (a + b)² = a² + 2ab + b². This is known as a basic polynomial identity, and it shows that when you square a binomial (a two-term expression like a + b), you get three terms: the square of the first term (a²), twice the product of the two terms (2ab), and the square of the second term (b²). Therefore, the correct answer is C (a² + 2ab + b²)
5. If you have a rectangle with a width of 5 inches and a length of 10 inches and scale it by a factor of 2, what will the new perimeter be?
- A. 30 inches
- B. 40 inches
- C. 60 inches
- D. 50 inches
Correct answer: C
Rationale: When a rectangle is scaled by a factor of 2, both the length and width are multiplied by 2. The new dimensions become width = 5 * 2 = 10 inches and length = 10 * 2 = 20 inches. Therefore, the new perimeter is calculated as 2 * (10 + 20) = 60 inches. Choice A, B, and D are incorrect as they do not reflect the correct calculation based on scaling the dimensions of the rectangle.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access