x 7 x 36 solve the equation which of the following is correct
Logo

Nursing Elites

ATI TEAS 7

TEAS Exam Math Practice

1. x ÷ 7 = x − 36. Solve the equation. Which of the following is correct?

Correct answer: B

Rationale: To solve the equation x ÷ 7 = x − 36, start by multiplying both sides by 7 to get 7(x ÷ 7) = 7(x − 36), which simplifies to x = 7x − 252. Next, subtract 7x from both sides to get -6x = -252. Finally, divide both sides by -6 to solve for x, which results in x = 42. Therefore, the correct answer is x = 42. Choice A (x = 6), Choice C (x = 4), and Choice D (x = 252) are incorrect as they do not align with the correct solution derived from the equation.

2. A piece of wood that is 7 1/2 feet long has 3 1/4 feet cut off. How many feet of wood remain?

Correct answer: A

Rationale: To find the remaining length of wood, you need to subtract 3 1/4 feet from 7 1/2 feet. When you subtract the fractions, 7 1/2 - 3 1/4, you get 15/2 - 13/4 = 30/4 - 13/4 = 17/4 = 4 1/4 feet. Therefore, the correct answer is 4 1/4 feet. Choice B (4 1/2 feet) is incorrect because the subtraction result is not 1/2. Choice C (3 1/2 feet) is incorrect as it does not match the correct result of 4 1/4 feet. Choice D (3 3/4 feet) is also incorrect as it does not align with the correct answer obtained from the subtraction of fractions.

3. A leather recliner is on sale for 30% less than its original price. A consumer has a coupon that saves an additional 25% off of the sale price. If the consumer pays $237 for the recliner, what is the original price of the recliner to the nearest dollar?

Correct answer: D

Rationale: To find the original price of the recliner, you need to reverse calculate. Let x be the original price. The sale price is 70% of the original price, and after the additional 25% coupon discount, the consumer pays $237. Setting up the equation: x × 0.70 × 0.75 = 237. Solving this equation, x ≈ $527. Therefore, the original price of the recliner was approximately $527. Choices A, B, and C are incorrect as they do not align with the correct calculation based on the given discounts.

4. In a city with a population of 51,623, 9.5% of the population voted for a new proposition. How many people approximately voted?

Correct answer: B

Rationale: To find the number of people who voted, you need to calculate 9.5% of the total population of 51,623. 9.5% of 51,623 is approximately 0.095 x 51,623 = 4,999.85, which is rounded to approximately 5,000 people. Therefore, the correct answer is 5,000 people. Choice A, 3,000 people, is incorrect as it is lower than the calculated value. Choice C, 7,000 people, is incorrect as it is higher than the calculated value. Choice D, 10,000 people, is incorrect as it is much higher than the calculated value.

5. Simplify the following expression: 5 x 3 ÷ 9 x 4

Correct answer: A

Rationale: To simplify the expression 5 x 3 ÷ 9 x 4, first perform the multiplications and divisions from left to right: 5 x 3 = 15 and 9 x 4 = 36. So, the expression becomes 15 ÷ 36. When dividing fractions, multiply the first fraction by the reciprocal of the second fraction. Hence, 15 ÷ 36 = 15/36. To simplify the fraction further, find the greatest common divisor, which is 3. Divide both the numerator and denominator by 3 to get the final result: 15/36 = 5/12. Therefore, the correct answer is A. Choices B, C, and D are incorrect because they do not represent the correct simplification of the given expression.

Similar Questions

Express as an improper fraction: 8 3/7
When rounding 245.2678 to the nearest thousandth, which place value would be used to decide whether to round up or round down?
After taxes, a worker earned $15,036 in 7 months. What is the amount the worker earned in 2 months?
Identify the positioning of decimal places after the decimal point in this number: 0.08573
In a research study, a researcher collects data on the number of hours spent studying and the grades students received. Which of the following is the dependent variable?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$1/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses